3,155 research outputs found
A mass spectrometric and quantum chemical study of the vaporisation of lead monoxide in a flow of gaseous arsenic and antimony trioxides
Mass spectrometric studies of the vapours over solid lead oxide in a flow of gaseous arsenic and antimony trioxides were conducted. The following ions of the ternary oxides were detected: Pb3As2O6+, Pb3AsO4+, PbAs2O4+, PbAsO2+, PbSb2O4+, and PbSbO2+. The origin of these species produced by the ionisation and/or fragmentation of ternary gaseous oxides is discussed. The PbAs2O4 species was undoubtedly identified by the determination of the appearance energy. Presumably, the Pb3As2O6 and PbSb2O4 species also existed in the gas phase. Thermodynamic data for the ternary oxides were obtained experimentally by means of a mass spectrometric Knudsen-cell method and were confirmed by quantum chemical calculations
The extent of NGC 6822 revealed by its C stars population
Using the CFH12K camera, we apply the four band photometric technique to
identify 904 carbon stars in an area 28' x 42' centered on NGC 6822. A few C
stars, outside of this area were also discovered with the Las Campanas Swope
Telescope. The NGC 6822 C star population has an average I of 19.26 mag leading
to an average absolute I magnitude of
-4.70 mag, a value essentially identical to the mean magnitude obtained for
the C stars in IC 1613. Contrary to stars highlighting the optical image of NGC
6822, C stars are seen at large radial distances and trace a huge slightly
elliptical halo which do not coincide with the huge HI cloud surrounding
NGC6822. The previously unknown stellar component of NGC 6822 has a exponential
scale length of 3.0' +/- 0.1' and can be traced to five scale lengths. The C/M
ratio of NGC 6822 is evaluated to br 1.0 +/- 0.2.Comment: accepted, to be published in A
Constraining the History of the Sagittarius Dwarf Galaxy Using Observations of its Tidal Debris
We present a comparison of semi-analytic models of the phase-space structure
of tidal debris with observations of stars associated with the Sagittarius
dwarf galaxy (Sgr). We find that many features in the data can be explained by
these models. The properties of stars 10-15 degrees away from the center of Sgr
--- in particular, the orientation of material perpendicular to Sgr's orbit
(c.f. Alard 1996) and the kink in the velocity gradient (Ibata et al 1997) ---
are consistent with those expected for unbound material stripped during the
most recent pericentric passage ~50 Myrs ago. The break in the slope of the
surface density seen by Mateo, Olszewski & Morrison (1998) at ~ b=-35 can be
understood as marking the end of this material. However, the detections beyond
this point are unlikely to represent debris in a trailing streamer, torn from
Sgr during the immediately preceding passage ~0.7 Gyrs ago, but are more
plausibly explained by a leading streamer of material that was lost more that 1
Gyr ago and has wrapped all the way around the Galaxy. The observations
reported in Majewski et al (1999) also support this hypothesis. We determine
debris models with these properties on orbits that are consistent with the
currently known positions and velocities of Sgr in Galactic potentials with
halo components that have circular velocities v_circ=140-200 km/s. The best
match to the data is obtained in models where Sgr currently has a mass of ~10^9
M_sun and has orbited the Galaxy for at least the last 1 Gyr, during which time
it has reduced its mass by a factor of 2-3, or luminosity by an amount
equivalent to ~10% of the total luminosity of the Galactic halo. These numbers
suggest that Sgr is rapidly disrupting and unlikely to survive beyond a few
more pericentric passages.Comment: 19 pages, 5 figures, accepted to Astronomical Journa
Assessing Deep Generative Models in Chemical Composition Space
The computational discovery of novel materials has been one of the main motivations behind research in theoretical chemistry for several decades. Despite much effort, this is far from a solved problem, however. Among other reasons, this is due to the enormous space of possible structures and compositions that could potentially be of interest. In the case of inorganic materials, this is exacerbated by the combinatorics of the periodic table since even a single-crystal structure can in principle display millions of compositions. Consequently, there is a need for tools that enable a more guided exploration of the materials design space. Here, generative machine learning models have recently emerged as a promising technology. In this work, we assess the performance of a range of deep generative models based on reinforcement learning, variational autoencoders, and generative adversarial networks for the prototypical case of designing Elpasolite compositions with low formation energies. By relying on the fully enumerated space of 2 million main-group Elpasolites, the precision, coverage, and diversity of the generated materials are rigorously assessed. Additionally, a hyperparameter selection scheme for generative models in chemical composition space is developed
A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae
AbstractClimate change is expected to alter coastal ecosystems in ways which may have predictable consequences for the seasonality and geographical distribution of human pathogens and harmful algae. Here we demonstrate relatively simple approaches for evaluating the risk of occurrence of pathogenic bacteria in the genus Vibrio and outbreaks of toxin-producing harmful algae in the genus Alexandrium, with estimates of uncertainty, in U.S. coastal waters under future climate change scenarios through the end of the 21st century. One approach forces empirical models of growth, abundance and the probability of occurrence of the pathogens and algae at specific locations in the Chesapeake Bay and Puget Sound with ensembles of statistically downscaled climate model projections to produce first order assessments of changes in seasonality. In all of the case studies examined, the seasonal window of occurrence for Vibrio and Alexandrium broadened, indicating longer annual periods of time when there is increased risk for outbreaks. A second approach uses climate model projections coupled with GIS to identify the potential for geographic range shifts for Vibrio spp. in the coastal waters of Alaska. These two approaches could be applied to other coastal pathogens that have climate sensitive drivers to investigate potential changes to the risk of outbreaks in both time (seasonality) and space (geographical distribution) under future climate change scenarios
On the accuracy of retrieved wind information from Doppler lidar observations
A single pulsed Doppler lidar was successfully deployed to measure air flow and turbulence over the Malvern hills, Worcester, UK. The DERA Malvern lidar used was a CO2 µm pulsed Doppler lidar. The lidar pulse repetition rate was 120 Hz and had a pulse duration of 0.6 µs The system was set up to have 41 range gates with range resolution of 112 m. This gave a theoretical maximum range of approximately 4.6 km. The lidar site was 2 km east of the Malvern hill ridge which runs in a north-south direction and is approximately 6 km long. The maximum height of the ridge is 430 m. Two elevation scans (Range-Height Indicators) were carried out parallel and perpendicular to the mean surface flow. Since the surface wind was primarily westerly the scans were carried out perpendicular and parallel to the ridge of the Malvern hills.
The data were analysed and horizontal winds, vertical winds and turbulent fluxes were calculated for profiles throughout the boundary layer. As an aid to evaluating the errors associated with the derivation of velocity and turbulence profiles, data from a simple idealized profile was also analysed using the same method. The error analysis shows that wind velocity profiles can be derived to an accuracy of 0.24 m s-1 in the horizontal and 0.3 m s-1 in the vertical up to a height of 2500 m. The potential for lidars to make turbulence measurements, over a wide area, through the whole depth of the planetary boundary layer and over durations from seconds to hours is discussed
The Three-Dimensional Circumstellar Environment of SN 1987A
We present the detailed construction and analysis of the most complete map to
date of the circumstellar environment around SN 1987A, using ground and
space-based imaging from the past 16 years. PSF-matched difference-imaging
analyses of data from 1988 through 1997 reveal material between 1 and 28 ly
from the SN. Careful analyses allows the reconstruction of the probable
circumstellar environment, revealing a richly-structured bipolar nebula. An
outer, double-lobed ``Peanut,'' which is believed to be the contact
discontinuity between red supergiant and main sequence winds, is a prolate
shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's
Hat, previously believed to be an independent structure, is the waist of this
Peanut, which is pinched to a radius of 6 ly. Interior to this is a cylindrical
hourglass, 1 ly in radius and 4 ly long, which connects to the Peanut by a
thick equatorial disk. The nebulae are inclined 41\degr south and 8\degr east
of the line of sight, slightly elliptical in cross section, and marginally
offset west of the SN. From the hourglass to the large, bipolar lobes, echo
fluxes suggest that the gas density drops from 1--3 cm^{-3} to >0.03 cm^{-3},
while the maximum dust-grain size increases from ~0.2 micron to 2 micron, and
the Si:C dust ratio decreases. The nebulae have a total mass of ~1.7 Msun. The
geometry of the three rings is studied, suggesting the northern and southern
rings are located 1.3 and 1.0 ly from the SN, while the equatorial ring is
elliptical (b/a < 0.98), and spatially offset in the same direction as the
hourglass.Comment: Accepted for publication in the ApJ Supplements. 38 pages in
apjemulate format, with 52 figure
The Extended Shapes of Galactic Satellites
We are exploring the extended stellar distributions of Galactic satellite
galaxies and globular clusters. For seven objects studied thus far, the
observed profile departs from a King function at large r, revealing a ``break
population'' of stars. In our sample, the relative density of the ``break''
correlates to the inferred M/L of these objects. We discuss opposing hypotheses
for this trend: (1) Higher M/L objects harbor more extended dark matter halos
that support secondary, bound, stellar ``halos''. (2) The extended populations
around dwarf spheroidals (and some clusters) consist of unbound, extratidal
debris from their parent objects, which are undergoing various degrees of tidal
disruption. In this scenario, higher M/L ratios reflect higher degrees of
virial non-equilibrium in the parent objects, thus invalidating a precept
underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of
Galaxies and Their Halo
Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements
The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century
- …