71 research outputs found

    Clustering the annotation space of proteins

    Get PDF
    BACKGROUND: Current protein clustering methods rely on either sequence or functional similarities between proteins, thereby limiting inferences to one of these areas. RESULTS: Here we report a new approach, named CLAN, which clusters proteins according to both annotation and sequence similarity. This approach is extremely fast, clustering the complete SwissProt database within minutes. It is also accurate, recovering consistent protein families agreeing on average in more than 97% with sequence-based protein families from Pfam. Discrepancies between sequence- and annotation-based clusters were scrutinized and the reasons reported. We demonstrate examples for each of these cases, and thoroughly discuss an example of a propagated error in SwissProt: a vacuolar ATPase subunit M9.2 erroneously annotated as vacuolar ATP synthase subunit H. CLAN algorithm is available from the authors and the CLAN database is accessible at CONCLUSIONS: CLAN creates refined function-and-sequence specific protein families that can be used for identification and annotation of unknown family members. It also allows easy identification of erroneous annotations by spotting inconsistencies between similarities on annotation and sequence levels

    Evolutionary conservation of sequence and secondary structures in CRISPR repeats

    Get PDF
    The categorisation and structural analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) sequences from 195 microbial genomes show that repeats from diverse organisms can be grouped based on sequence similarity, and that some groups have pronounced secondary structures with compensatory base changes

    Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes

    Get PDF
    BACKGROUND: Pseudogenes often manifest themselves as disabled copies of known genes. In prokaryotes, it was generally believed (with a few well-known exceptions) that they were rare. RESULTS: We have carried out a comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes. Overall, we find a total of around 7,000 candidate pseudogenes. Moreover, in all the genomes surveyed, pseudogenes occur in at least 1 to 5% of all gene-like sequences, with some genomes having considerably higher occurrence. Although many large populations of pseudogenes arise from large, diverse protein families (for example, the ABC transporters), notable numbers of pseudogenes are associated with specific families that do not occur that widely. These include the cytochrome P450 and PPE families (PF00067 and PF00823) and others that have a direct role in DNA transposition. CONCLUSIONS: We find suggestive evidence that a large fraction of prokaryote pseudogenes arose from failed horizontal transfer events. In particular, we find that pseudogenes are more than twice as likely as genes to have anomalous codon usage associated with horizontal transfer. Moreover, we found a significant difference in the number of horizontally transferred pseudogenes in pathogenic and non-pathogenic strains of Escherichia coli

    Measuring genome conservation across taxa: divided strains and united kingdoms

    Get PDF
    Species evolutionary relationships have traditionally been defined by sequence similarities of phylogenetic marker molecules, recently followed by whole-genome phylogenies based on gene order, average ortholog similarity or gene content. Here, we introduce genome conservation—a novel metric of evolutionary distances between species that simultaneously takes into account, both gene content and sequence similarity at the whole-genome level. Genome conservation represents a robust distance measure, as demonstrated by accurate phylogenetic reconstructions. The genome conservation matrix for all presently sequenced organisms exhibits a remarkable ability to define evolutionary relationships across all taxonomic ranges. An assessment of taxonomic ranks with genome conservation shows that certain ranks are inadequately described and raises the possibility for a more precise and quantitative taxonomy in the future. All phylogenetic reconstructions are available at the genome phylogeny server: <>

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing

    Denoising inferred functional association networks obtained by gene fusion analysis.

    Get PDF
    BACKGROUND: Gene fusion detection - also known as the 'Rosetta Stone' method - involves the identification of fused composite genes in a set of reference genomes, which indicates potential interactions between its un-fused counterpart genes in query genomes. The precision of this method typically improves with an ever-increasing number of reference genomes. RESULTS: In order to explore the usefulness and scope of this approach for protein interaction prediction and generate a high-quality, non-redundant set of interacting pairs of proteins across a wide taxonomic range, we have exhaustively performed gene fusion analysis for 184 genomes using an efficient variant of a previously developed protocol. By analyzing interaction graphs and applying a threshold that limits the maximum number of possible interactions within the largest graph components, we show that we can reduce the number of implausible interactions due to the detection of promiscuous domains. With this generally applicable approach, we generate a robust set of over 2 million distinct and testable interactions encompassing 696,894 proteins in 184 species or strains, most of which have never been the subject of high-throughput experimental proteomics. We investigate the cumulative effect of increasing numbers of genomes on the fidelity and quantity of predictions, and show that, for large numbers of genomes, predictions do not become saturated but continue to grow linearly, for the majority of the species. We also examine the percentage of component (and composite) proteins with relation to the number of genes and further validate the functional categories that are highly represented in this robust set of detected genome-wide interactions. CONCLUSION: We illustrate the phylogenetic and functional diversity of gene fusion events across genomes, and their usefulness for accurate prediction of protein interaction and function

    Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat

    Get PDF
    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that were consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near-identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino-acid usage, indicating that hypersalinity enforces an overriding selective pressure on the mat community
    corecore