13 research outputs found

    Novel anti-inflammatory peptides based on chemokine – glycosaminoglycan interactions reduce leukocyte migration and disease severity in a model of rheumatoid arthritis

    Get PDF
    Inflammation is characterized by the infiltration of leukocytes from the circulation and into the inflamed area. Leukocytes are guided throughout this process by chemokines. These are basic proteins that interact with leukocytes to initiate their activation and extravasation via chemokine receptors. This is enabled through chemokine immobilization by glycosaminoglycans (GAGs) at the luminal endothelial surface of blood vessels. A specific stretch of basic amino acids on the chemokine, often at the C terminus, interacts with the negatively charged GAGs, which is considered an essential interaction for the chemokine function. Short-chain peptides based on this GAG-binding region of the chemokines CCL5, CXCL8, and CXCL12γ were synthesized using standard Fmoc chemistry. These peptides were found to bind to GAGs with high affinity, which translated into a reduction of leukocyte migration across a cultured human endothelial monolayer in response to chemokines. The leukocyte migration was inhibited upon removal of heparan sulfate from the endothelial surface and was found to reduce the ability of the chemokine and peptide to bind to endothelial cells in binding assays and to human rheumatoid arthritis tissue. The data suggest that the peptide competes with the wild-type chemokine for binding to GAGs such as HS and thereby reduces chemokine presentation and subsequent leukocyte migration. Furthermore, the lead peptide based on CXCL8 could reduce the disease severity and serum levels of the proinflammatory cytokine TNF-α in a murine Ag-induced arthritis model. Taken together, evidence is provided for interfering with the chemokine-GAG interaction as a relevant therapeutic approach

    A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations.

    No full text
    Contains fulltext : 60567.pdf (publisher's version ) (Closed access)Binding of interleukin-8 (IL-8) to glycosaminoglycans (GAGs) on the surface of endothelial cells is crucial for the recruitment of neutrophils to an inflammatory site. Deriving structural knowledge about this interaction from in silico docking experiments has proved difficult because of the high flexibility and the size of GAGs. Therefore, we developed a docking method that takes into account ligand and protein flexibility by running approximately 15,000 molecular dynamics simulations of the docking event with different initial orientations of the binding partners. The method was shown to successfully reproduce the residues of basic fibroblast growth factor involved in GAG binding. Docking of a heparin hexasaccharide to IL-8 gave an interaction interface involving the basic residues His18, Lys20, Arg60, Lys64, Lys67, and Arg68. By subjecting IL-8 single-site mutants, in which these amino acids were replaced by alanine, to isothermal fluorescence titrations, the affinities for heparin were determined to be wtIL-8 > IL-8(H18A) >> IL-8(R68A) > IL-8(K67A) >> IL-8(K20A) > IL-8(R60A) >> IL-8(K64A). A comparison with the binding energies calculated from the model revealed high values for wtIL-8 and the H18A mutant and significantly lower but similar energies for the remaining mutants. Connecting the two fully sulfated hexasaccharides bound to each of the two IL-8 monomers in the dimeric chemokine by an N-acetylated dodecasaccharide gave a complex structure in which the GAG molecule aligned in a parallel fashion to the N-terminal alpha-helices of IL-8 like a horseshoe. A 5-ns molecular dynamics simulation of this complex confirmed its structural stability and revealed a reorientation in both binding sites where a disaccharide became the central binding unit. Isothermal fluorescence titration experiments using differently sulfated heparin disaccharides confirmed that a single disaccharide can indeed bind IL-8 with high affinity

    Glycanogenomics: a qPCR-approach to investigate biological glycan function.

    No full text
    Contains fulltext : 70141.pdf (publisher's version ) (Closed access)As an indirect approach towards glycan structures, qRT-PCR analyses using the DeltaDeltaC(T) method were performed to investigate changes in expression levels of heparan sulfate-synthesising enzymes of stimulated and unstimulated HMVECs. We chose NDSTs as early enzymes initiating sulfation and 3OSTs which act late generating specific binding sites. Major changes in expression patterns were found for the NDST3 and 3OST1 isoforms. Both enzymes were down-regulated 7- and 6-fold, respectively, following TNF-alpha stimulation, and 3.5- and 7.6-fold following LPS-stimulation suggesting a common restructuring process of HS in inflammation leading to a less diverse sulfation pattern. Immunostaining of TNF-alpha-stimulated cells using a phage display-derived antibody specific for 3-O-sulfation and unsulfated regions of HS resulted in significant fluorescence changes between unstimulated and stimulated

    Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo

    No full text
    The pro-inflammatory chemokine interleukin-8 (CXCL8) exerts its function by establishing a chemotactic gradient in infected or damaged tissues to guide neutrophil granulocytes to the site of inflammation via its G protein-coupled receptors (GPCRs) CXCR1 and CXCR2 located on neutrophils. Endothelial glycosaminoglycans (GAGs) have been proposed to support the chemotactic gradient formation and thus the inflammatory response by presenting the chemokine to approaching leukocytes. In this study, we show that neutrophil transmigration in vitro can be reduced by adding soluble GAGs and that this process is specific with respect to the nature of the glycan. To further investigate the GAG influence on neutrophil migration, we have used an engineered CXCL8 mutant protein (termed PA401) which exhibits a much higher affinity towards GAGs and an impaired GPCR activity. This dominant-negative mutant chemokine showed anti-inflammatory activity in various animal models of neutrophil-driven inflammation, i.e. in urinary tract infection, bleomycin-induced lung fibrosis, and experimental autoimmune uveitis. In all cases, treatment with PA401 resulted in a strong reduction of transmigrated inflammatory cells which became evident from histology sections and bronchoalveolar lavage. Since our CXCL8-based decoy targets GAGs and not GPCRs, our results show for the first time the crucial involvement of this glycan class in CXCL8/neutrophil-mediated inflammation and will thus pave the way to novel approaches of anti-inflammatory treatment

    Glycosaminoglycans are important mediators of neutrophilic inflammation in vivo

    No full text
    The pro-inflammatory chemokine interleukin-8 (CXCL8) exerts its function by establishing a chemotactic gradient in infected or damaged tissues to guide neutrophil granulocytes to the site of inflammation via its G protein-coupled receptors (GPCRs) CXCR1 and CXCR2 located on neutrophils. Endothelial glycosaminoglycans (GAGs) have been proposed to support the chemotactic gradient formation and thus the inflammatory response by presenting the chemokine to approaching leukocytes. In this study, we show that neutrophil transmigration in vitro can be reduced by adding soluble GAGs and that this process is specific with respect to the nature of the glycan. To further investigate the GAG influence on neutrophil migration, we have used an engineered CXCL8 mutant protein (termed PA401) which exhibits a much higher affinity towards GAGs and an impaired GPCR activity. This dominant-negative mutant chemokine showed anti-inflammatory activity in various animal models of neutrophil-driven inflammation, i.e. in urinary tract infection, bleomycin-induced lung fibrosis, and experimental autoimmune uveitis. In all cases, treatment with PA401 resulted in a strong reduction of transmigrated inflammatory cells which became evident from histology sections and bronchoalveolar lavage. Since our CXCL8-based decoy targets GAGs and not GPCRs, our results show for the first time the crucial involvement of this glycan class in CXCL8/neutrophil-mediated inflammation and will thus pave the way to novel approaches of anti-inflammatory treatment

    Structural fuzziness of the RNA-organizing protein SERF determines a toxic gain-of-interaction

    No full text
    The mechanisms by which protein complexes convert from functional into pathogenic are the subject of intensive research. Here, we report how functionally unfavourable protein interactions can be induced by structural fuzziness, i.e. by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favours toxic binding to aSyn at the expense of non-toxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies

    Structural fuzziness of the RNA-organizing protein SERF determines a toxic gain-of-interaction

    No full text
    The mechanisms by which protein complexes convert from functional into pathogenic are the subject of intensive research. Here, we report how functionally unfavourable protein interactions can be induced by structural fuzziness, i.e. by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favours toxic binding to aSyn at the expense of non-toxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies
    corecore