3,450 research outputs found

    Stability of nonuniform rotor blades in hover using a mixed formulation

    Get PDF
    A mixed formulation for calculating static equilibrium and stability eigenvalues of nonuniform rotor blades in hover is presented. The static equilibrium equations are nonlinear and are solved by an accurate and efficient collocation method. The linearized perturbation equations are solved by a one step, second order integration scheme. The numerical results correlate very well with published results from a nearly identical stability analysis based on a displacement formulation. Slight differences in the results are traced to terms in the equations that relate moments to derivatives of rotations. With the present ordering scheme, in which terms of the order of squares of rotations are neglected with respect to unity, it is not possible to achieve completely equivalent models based on mixed and displacement formulations. The one step methods reveal that a second order Taylor expansion is necessary to achieve good convergence for nonuniform rotating blades. Numerical results for a hypothetical nonuniform blade, including the nonlinear static equilibrium solution, were obtained with no more effort or computer time than that required for a uniform blade

    Evolution of structural and magnetic properties in Ta/Ni_81Fe_(19) multilayer thin films

    Get PDF
    The interdiffusion kinetics in short period (12.8 nm) Ta/Ni81Fe19 polycrystalline multilayer films has been investigated and related to the evolution of soft magnetic properties upon thermal annealing in the temperature range 300-600-degrees-C. Small angle x-ray diffraction and transmission electron microscopy were used to estimate the multilayer period. Interdiffusion in the multilayers was directly computed from the decay of the satellites near (000) in a small angle x-ray diffraction spectrum. A kinetic analysis of interdiffusion suggests that grain growth is concurrent with grain boundary diffusion of Ta in Ni81Fe19. The evolution of soft magnetic properties of Ni81Fe19, i.e., lowering of 4piM(s) and increase in coercivity H(c), also lend support to the above analysis

    Thermodynamics and magnetic field profiles in low-kappa type-II superconductors

    Full text link
    Two-dimensional low-kappa type-II superconductors are studied numerically within the Eilenberger equations of superconductivity. Depending on the Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be attractive or purely repulsive. The sign of interaction is manifested as a first (second) order phase transition from Meissner to the mixed state. Temperature and field dependence of the magnetic field distribution in low-kappa type-II superconductors with attractive intervortex interaction is calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure
    corecore