5,131 research outputs found

    Two dimensional imaging observations of meter-decameter bursts associated with the February 1986 flare activity

    Get PDF
    An analysis is presented of the two dimensional imaging observations of a flare observed on 3 Feb. l986 using the Clark Lake Multifrequency Radioheliograph. The flare produced almost all types of Meter-decimeter radio emission: enhanced storm radiation, type III/V bursts, II and IV and flare continuum. The flare continuum had early (FCE) and late (FC II) components and the type II occurred during the period between these two components. Comparing the source positions of type III/V and FCE it was found that these bursts must have occurred along adjacent open and closed field lines, respectively. The positional analysis of type II and FC II implies that the nonthermal electrons responsible for FC II need not be accelerated by type II shock and this conclusion is further supported by the close association of FC II with a microwave peak. Using the positional and temporal analysis of all these bursts and the associated hard X-ray and microwave emissions, a schematic model is developed for the magnetic field configuration in the flaring region in which the nonthermal particles responsible for these bursts are confined or along which they propagate

    Millimeter and hard x ray/gamma ray observations of solar flares during the June 1991 GRO campaign

    Get PDF
    We have carried out high-spatial-resolution millimeter observations of solar flares using the Berkeley-Illinois-Maryland Array (BIMA). At the present time, BIMA consists of only three elements, which is not adequate for mapping highly variable solar phenomena, but is excellent for studies of the temporal structure of flares at millimeter wavelengths at several different spatial scales. We present BIMA observations made during the Gamma Ray Observatories (GRO)/Solar Max 1991 campaign in Jun. 1991 when solar activity was unusually high. Our observations covered the period 8-9 Jun. 1991; this period overlapped the period 4-15 Jun. when the Compton Telescope made the Sun a target of opportunity because of the high level of solar activity

    Yang-Baxter algebra and generation of quantum integrable models

    Full text link
    An operator deformed quantum algebra is discovered exploiting the quantum Yang-Baxter equation with trigonometric R-matrix. This novel Hopf algebra along with its q1q \to 1 limit appear to be the most general Yang-Baxter algebra underlying quantum integrable systems. Three different directions of application of this algebra in integrable systems depending on different sets of values of deforming operators are identified. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, while the associated Lax operators generate and classify them in an unified way. Variable values construct a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.Comment: 13 pages, revised and bit expanded with additional explanations, accepted for publication in Theor. Math. Phy

    Neutrino scattering off pair-breaking and collective excitations in superfluid neutron matter and in color-flavor locked quark matter

    Full text link
    We calculate the correlation functions needed to describe the linear response of superfluid matter, and go on to calculate the differential cross section for neutral-current neutrino scattering in superfluid neutron matter and in color-flavor locked quark matter (CFL). We report the first calculation of scattering rates that includes neutrino interactions with both pair-breaking excitations and low-lying collective excitations (Goldstone modes). Our results apply both above and below the critical temperature, allowing use in simulations of neutrino transport in supernovae and neutron stars.Comment: 22 pages, 9 figure

    Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules

    Get PDF
    We report on two anomalous trends in the temperature dependences of the splay (K11) and bend (K33) elastic constants in the nematic (N) phase of mixtures of compounds with rodlike (R) and bent-core (BC) molecules: As the sample is cooled from the isotropic to N transition point, (i) K33 increases, attains a maximum value and then decreases, and (ii) close to the N to smectic A (SmA) transition point, K11 decreases sharply. At higher temperatures the bow axes of BC molecules are aligned along the director n^, strongly favoring a bend distortion of n^ as the orientational order parameter is increased. Close to the N-SmA transition point the smecticlike short-range order builds up, and the arrow axes of BC molecules are aligned along n^, facilitating a splay distortion of n^. A simple model calculation brings out the anomalous trend in K33

    The Absolute Abundance of Iron in the Solar Corona

    Get PDF
    We present a measurement of the abundance of Fe relative to H in the solar corona using a technique which differs from previous spectroscopic and solar wind measurements. Our method combines EUV line data from the CDS spectrometer on SOHO with thermal bremsstrahlung radio data from the VLA. The coronal Fe abundance is derived by equating the thermal bremsstrahlung radio emission calculated from the EUV Fe line data to that observed with the VLA, treating the Fe/H abundance as the sole unknown. We apply this technique to a compact cool active region and find Fe/H = 1.56 x 10^{-4}, or about 4 times its value in the solar photosphere. Uncertainties in the CDS radiometric calibration, the VLA intensity measurements, the atomic parameters, and the assumptions made in the spectral analysis yield net uncertainties of order 20%. This result implies that low first ionization potential elements such as Fe are enhanced in the solar corona relative to photospheric values.Comment: Astrophysical Journal Letters, in pres

    Biferroic YCrO3

    Full text link
    YCrO3 which has a monoclinic structure, shows weak ferromagnetism below 140 K (TN) and a ferroelectric transition at 473 K accompanied by hysteresis. We have determined the structure and energetics of YCrO3 with ferromagnetic and antiferromagnetic ordering by means of first-principles density functional theory calculations, based on pseudopotentials and a plane wave basis. The non-centrosymmetric monoclinic structure is found to be lower in energy than the orthorhombic structure, supporting the biferroic nature of YCrO3.Comment: 16 pages including figure

    Exact accelerating solitons in nonholonomic deformation of the KdV equation with two-fold integrable hierarchy

    Full text link
    Recently proposed nonholonomic deformation of the KdV equation is solved through inverse scattering method by constructing AKNS-type Lax pair. Exact and explicit N-soliton solutions are found for the basic field and the deforming function showing an unusual accelerated (decelerated) motion. A two-fold integrable hierarchy is revealed, one with usual higher order dispersion and the other with novel higher nonholonomic deformations.Comment: 7 pages, 2 figures, latex. Exact explicit exact N-soliton solutions (through ISM) for KdV field u and deforming function w are included. Version to be published in J. Phys.
    corecore