36 research outputs found

    HIV-Specific Cellular Immune Response Is Inversely Correlated with Disease Progression as Defined by Decline of CD4+ T Cells in Relation to HIV RNA Load

    Get PDF
    The average time between infection with human immunodeficiency virus (HIV) and development of acquired immune deficiency syndrome is ∼8 years. However, progression rates vary widely, depending on several determinants, including HIV-specific immunity, host genetic factors, and virulence of the infecting strain. In untreated HIV-infected patients with different progression rates, we examined HIV-specific T cell responses in combination with host genetic markers, such as chemokine/chemokine-receptor (CCR) polymorphisms and human leukocyte antigen (HLA) genotypes. HIV-specific CD4+ T cell responses and, to a lesser extent, HIVspecific CD8+ T cell responses were inversely correlated with progression rate. Slower progression was not related to polymorphisms in CCR genes, HLA genotype, or GB virus C coinfection. These data suggest that HIV-specific T cell responses are involved in protecting the host from disease progressio

    Impaired Negative Selection of T Cells in Hodgkin's Disease Antigen CD30–Deficient Mice

    Get PDF
    AbstractCD30 is found on Reed–Sternberg cells of Hodgkin's disease and on a variety of non-Hodgkin's lymphoma cells and is up-regulated on cells after Epstein–Barr virus, human T cell leukemia virus, and HIV infections. We report here that the thymus in CD30-deficient mice contains elevated numbers of thymocytes. Activation-induced death of thymocytes after CD3 cross-linking is impaired both in vitro and in vivo. Breeding the CD30 mutation separately into αβTCR- or γδTCR-transgenic mice revealed a gross defect in negative but not positive selection. Thus, like TNF-receptors and Fas/Apo-1, the CD30 receptor is involved in cell death signaling. It is also an important coreceptor that participates in thymic deletion

    A Vaccine against Nicotine for Smoking Cessation: A Randomized Controlled Trial

    Get PDF
    BACKGROUND: Tobacco dependence is the leading cause of preventable death and disabilities worldwide and nicotine is the main substance responsible for the addiction to tobacco. A vaccine against nicotine was tested in a 6-month randomized, double blind phase II smoking cessation study in 341 smokers with a subsequent 6-month follow-up period. METHODOLOGY/PRINCIPAL FINDINGS: 229 subjects were randomized to receive five intramuscular injections of the nicotine vaccine and 112 to receive placebo at monthly intervals. All subjects received individual behavioral smoking cessation counseling. The vaccine was safe, generally well tolerated and highly immunogenic, inducing a 100% antibody responder rate after the first injection. Point prevalence of abstinence at month 2 showed a statistically significant difference between subjects treated with Nicotine-Qbeta (47.2%) and placebo (35.1%) (P = 0.036), but continuous abstinence between months 2 and 6 was not significantly different. However, in subgroup analysis of the per-protocol population, the third of subjects with highest antibody levels showed higher continuous abstinence from month 2 until month 6 (56.6%) than placebo treated participants (31.3%) (OR 2.9; P = 0.004) while medium and low antibody levels did not increase abstinence rates. After 12 month, the difference in continuous abstinence rate between subjects on placebo and those with high antibody response was maintained (difference 20.2%, P = 0.012). CONCLUSIONS: Whereas Nicotine-Qbeta did not significantly increase continuous abstinence rates in the intention-to-treat population, subgroup analyses of the per-protocol population suggest that such a vaccination against nicotine can significantly increase continuous abstinence rates in smokers when sufficiently high antibody levels are achieved. Immunotherapy might open a new avenue to the treatment of nicotine addiction. TRIAL REGISTRATION: Swiss Medical Registry 2003DR2327; ClinicalTrials.gov NCT00369616

    Evaluation of the Interplay between the ADAR Editome and Immunotherapy in Melanoma

    Get PDF
    BACKGROUND RNA editing is a highly conserved posttranscriptional mechanism that contributes to transcriptome diversity. In mammals, it includes nucleobase deaminations that convert cytidine (C) into uridine (U) and adenosine (A) into inosine (I). Evidence from cancer studies indicates that RNA-editing enzymes promote certain mechanisms of tumorigenesis. On the other hand, recoding editing in mRNA can generate mutations in proteins that can participate in the Major Histocompatibility Complex (MHC) ligandome and can therefore be recognized by the adaptive immune system. Anti-cancer treatment based on the administration of immune checkpoint inhibitors enhance these natural anti-cancer immune responses. RESULTS Based on RNA-Seq datasets, we evaluated the editome of melanoma cell lines generated from patients pre- and post-immunotherapy with immune checkpoint inhibitors. Our results reveal a differential editing in Arthrobacter luteus (Alu) sequences between samples pre-therapy and relapses during therapy with immune checkpoint inhibitors. CONCLUSION These data pave the way towards the development of new diagnostics and therapies targeted to editing that could help in preventing relapses during immunotherapies

    New chiral N-heterocyclic carbene ligands in palladium-catalyzed α-arylations of amides: conformational locking through allylic strain as a device for stereocontrol

    No full text
    New Enders/Herrmann-type chiral N-heterocyclic carbene (NHC) ligands have been developed and applied in asymmetric palladium-catalyzed intramolecular α-arylations of amides. The best ligands feature the bulky tert-butyl group and ortho-substituted aryl groups at the stereogenic centers. Aryl bromides readily react at room temperature and aryl chlorides at 50 °C. The highly enantiomerically enriched (up to 96 % ee) 3-alkyl-3-aryloxindole products were obtained in generally high yields (>95 %) except in cases of steric congestion. The critical roles both of the bulky alkyl group and of the ortho-aryl substituent at the stereogenic center of the ligand were revealed in the crystal structure of a [Pd(η3-allyl)(NHC-L*)(I)] complex. The ligand aryl location and orientation is fixed by conformational locking that minimizes A1,3-strain and enables optimal transfer of chiral information

    CpG Oligodeoxynucleotides Block Human Immunodeficiency Virus Type 1 Replication in Human Lymphoid Tissue Infected Ex Vivo

    No full text
    Oligodeoxynucleotides (ODNs) with immunomodulatory motifs control a number of microbial infections in animal models, presumably by acting through toll-like receptor 9 (TLR9) to induce a number of cytokines (e.g., alpha interferon and tumor necrosis factor alpha). The immunomodulatory motif consists of unmethylated sequences of cytosine and guanosine (CpG motif). ODNs without CpG motifs do not trigger TLR9. We hypothesized that triggering of TLR9 generates a cellular environment unfavorable for human immunodeficiency virus (HIV) replication. We tested this hypothesis in human lymphocyte cultures and found that phosphorothioate-modified ODN CpG2006 (type B ODNs) inhibited HIV replication nearly completely and prevented the loss of CD4(+) T cells. ODNs CpG2216 and CpG10 (type A ODNs) were less effective. CpG2006 blocked HIV replication in purified CD4(+) T cells and T-cell lines; CpG10 was ineffective in this setting, indicating that type A ODNs may inhibit HIV replication in CD4(+) T-cell lines indirectly through a separate cell subset. However, control ODNs without CpG motifs also showed anti-HIV effects, indicating that these effects are nonspecific and not due to TLR9 triggering. The mechanism of action is not clear. CpG2006 and its control ODN blocked syncytium formation in a cell fusion-based assay, but CpG10, CpG2216, and their control ODNs did not. The latter types interfered with the HIV replication cycle during disassembly or reverse transcription. In contrast, CpG2006 and CpG2216 specifically induced cytokines critical to initiation of the innate immune response. In summary, the nonspecific anti-HIV activity of CpG ODNs, their ability to stimulate HIV replication in latently infected cells, potentially resulting in their elimination, and their documented ability to link the innate and adaptive immune responses make them attractive candidates for further study as anti-HIV drugs

    Antigen kinetics determines immune reactivity

    No full text
    A current paradigm in immunology is that the strength of T cell responses is governed by antigen dose, localization, and costimulatory signals. This study investigates the influence of antigen kinetics on CD8 T cell responses in mice. A fixed cumulative antigen dose was administered by different schedules to produce distinct dose-kinetics. Antigenic stimulation increasing exponentially over days was a stronger stimulus for CD8 T cells and antiviral immunity than a single dose or multiple dosing with daily equal doses. The same was observed for dendritic cell vaccination, with regard to T cell and anti-tumor responses, and for T cells stimulated in vitro. In conclusion, stimulation kinetics per se was shown to be a separate parameter of immunogenicity. These findings warrant a revision of current immunization models and have implications for vaccine development and immunotherapy
    corecore