242 research outputs found

    Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey

    Full text link
    Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming at locating the oriented objects of numerous predefined object categories. Recently, deep learning based methods have achieved remarkable performance in detecting oriented objects in optical remote sensing imagery. However, a thorough review of the literature in remote sensing has not yet emerged. Therefore, we give a comprehensive survey of recent advances and cover many aspects of oriented object detection, including problem definition, commonly used datasets, evaluation protocols, detection frameworks, oriented object representations, and feature representations. Besides, the state-of-the-art methods are analyzed and discussed. We finally discuss future research directions to put forward some useful research guidance. We believe that this survey shall be valuable to researchers across academia and industr

    Activation of Endothelial Cells by Antiphospholipid Antibodies—A Possible Mechanism Triggering Thrombosis in Patients with Antiphospholipid Syndrome

    Get PDF
    Antiphospholipid syndrome (APS) is an antibody-mediated hypercoagulable state characterized by recurrent venous and arterial thromboembolic events. The presence of serum antibodies are collectively termed as antiphospholipid antibodies (aPL) and is the hallmark of the disease. Interest in the pathogenesis has mostly been focused on the blood coagulation factor. However, endothelial cells might play an important role. When stimulated, cell membrane would flip to expose negatively charged phospholipids and activation markers such as adhesive molecules may appear. We consider that these changes may play an important role in the initiation of the thrombotic process when endothelial cells encounter aPL. In this study, we incubated human umbilical vein endothelial cells (HUVECs) with IgG isolated from patients with APS and found that the HUVECs were activated by the expression of negatively charged phospholipids, as shown by high annexin V binding and negative propidium iodide staining and by an increase in the level of intracellular cell adhesion molecule-1 on the cell surface. The above findings indicate that endothelial cells can be activated on exposure to aPL and trigger the thrombotic event

    Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats

    Get PDF
    Garlic oil has been reported to protect the cardiovascular system; however, the effects and mechanisms behind the cardioprotection of garlic oil on diabetes-induced cardiaomyopathy are unclear. In this study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether garlic oil could protect the heart from diabetes-induced cardiomyopathy. Wistar STZ-induced diabetic rats received garlic oil (0, 10, 50 or 100 mg kg_1 body weight) by gastric gavage every 2 days for 16 days. Normal rats without diabetes were used as control. Cardiac contractile dysfunction and cardiac pathologic hypertrophy responses were observed in diabetic rat hearts. Cardiac function was examined using echocardiography. In addition to cardiac hypertrophy-related mitogen-activated protein kinases (MAPK) pathways (e.g., p38, c-Jun N-terminal kinases (JNK) and extracellularly responsive kinase (ERK1/2)), the IL-6/MEK5/ERK5 signaling pathway was greatly activated in the diabetic rat hearts, which contributes to the up-regulation of cardiac pathologic hypertrophy markers including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), and leads to cardiac contractile dysfunction. Garlic oil treatment significantly inhibited the up-regulation in MAPK (e.g., p38, JNK and ERK1/2) and IL-6/MEK5/ERK5 signaling pathways in the diabetic rat hearts, reducing the levels of cardiac pathologic hypertrophy markers such as ANP and BNP, and improving the cardiac contractile function. Collectively, data from these studies demonstrate that garlic oil shows the potential cardioprotective effects for protecting heart from diabetic cardiomyopathy

    Development and validation of a nomogram model for predicting unfavorable functional outcomes in ischemic stroke patients after acute phase

    Get PDF
    IntroductionPrediction of post-stroke functional outcome is important for personalized rehabilitation treatment, we aimed to develop an effective nomogram for predicting long-term unfavorable functional outcomes in ischemic stroke patients after acute phase.MethodsWe retrospectively analyzed clinical data, rehabilitation data, and longitudinal follow-up data from ischemic stroke patients who underwent early rehabilitation at multiple centers in China. An unfavorable functional outcome was defined as a modified Rankin Scale (mRS) score of 3–6 at 90 days after onset. Patients were randomly allocated to either a training or test cohort in a ratio of 4:1. Univariate and multivariate logistic regression analyses were used to identify the predictors for the development of a predictive nomogram. The area under the receiver operating characteristic curve (AUC) was used to evaluate predictive ability in both the training and test cohorts.ResultsA total of 856 patients (training cohort: n = 684; test cohort: n = 172) were included in this study. Among them, 518 patients experienced unfavorable outcomes 90 days after ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment classification (p = 0.024), antihypertensive agents use [odds ratio (OR) = 1.86; p = 0.041], 15-day Barthel Index score (OR = 0.930; p < 0.001) and 15-day mRS score (OR = 13.494; p < 0.001) were selected as predictors for the unfavorable outcome nomogram. The nomogram model showed good predictive performance in both the training (AUC = 0.950) and test cohorts (AUC = 0.942).ConclusionThe constructed nomogram model could be a practical tool for predicting unfavorable functional outcomes in ischemic stroke patients underwent early rehabilitation after acute phase

    Ligand-Activated Peroxisome Proliferator-Activated Receptor-  Protects Against Ischemic Cerebral Infarction and Neuronal Apoptosis by 14-3-3  Upregulation

    Get PDF
    Thiazolidinediones (TZD) were reported to protect against ischemia-reperfusion (I/R) injury. Their protective actions are considered to be PPAR-γ (peroxisome proliferator-activated receptor γ)-dependent. However, it is unclear how PPAR-γ activation confers resistance to I/R
    corecore