34 research outputs found

    Undergraduate educational environment, perceived preparedness for postgraduate clinical training, and pass rate on the National Medical Licensure Examination in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the views of newly graduating physicians on their preparedness for postgraduate clinical training, and evaluated the relationship of preparedness with the educational environment and the pass rate on the National Medical Licensure Examination (NMLE).</p> <p>Methods</p> <p>Data were obtained from 2429 PGY-1 physicians-in-training (response rate, 36%) using a mailed cross-sectional survey. The Dundee Ready Education Environment Measure (DREEM) inventory was used to assess the learning environment at 80 Japanese medical schools. Preparedness was assessed based on 6 clinical areas related to the Association of American Medical Colleges Graduation Questionnaire.</p> <p>Results</p> <p>Only 17% of the physicians-in-training felt prepared in the area of general clinical skills, 29% in basic knowledge of diagnosis and management of common conditions, 48% in communication skills, 19% in skills associated with evidence-based medicine, 54% in professionalism, and 37% in basic skills required for a physical examination. There were substantial differences among the medical schools in the perceived preparedness of their graduates. Significant positive correlations were found between preparedness for all clinical areas and a better educational environment (all p < 0.01), but there were no significant associations between the pass rate on the NMLE and perceived preparedness for any clinical area, as well as pass rate and educational environment (all p > 0.05).</p> <p>Conclusion</p> <p>Different educational environments among universities may be partly responsible for the differences in perceived preparedness of medical students for postgraduate clinical training. This study also highlights the poor correlation between self-assessed preparedness for practice and the NMLE.</p

    Importance of serial changes in biomarkers in idiopathic pulmonary fibrosis

    No full text
    The clinical significance of serial changes in serum biomarkers in patients with idiopathic pulmonary fibrosis (IPF) remains to be established. This retrospective study was conducted to clarify the associations of serial changes in serum Krebs von den Lungen-6 (KL-6) and surfactant protein-D (SP-D) with changes in physiological indices and overall mortality in IPF. The study subjects were 75 patients with IPF. The 6 month change in serum KL-6 was significantly correlated with changes in the percentage of the predicted forced vital capacity (FVC % pred) and the percentage of the predicted diffusing capacity of the lung for carbon monoxide (% DLCO), while the 6 month change in serum SP-D was correlated only with % DLCO. During the mean follow-up period of 647 days, 22 (29.3%) patients died. An increase in serum KL-6 over a 6 month period was a significant predictor of mortality even after adjustment for %FVC, % DLCO and serum KL-6 at the baseline (hazard ratio 1.10 per 100 U·mL−1, 95% CI 1.01–1.18, p=0.03), whereas the 6 month increase in serum SP-D was not significant. Serial measurements of serum KL-6 may provide additional prognostic information compared to that provided by physiological parameters in patients with IPF

    Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation.

    No full text
    CXCL12, also known as stromal cell-derived factor-1, is a chemokine classified into CXC families, which exerts its function by binding to specific receptors called CXCR4 and CXCR7. Human platelets express CXCR4 and CXCR7 on the plasma membrane. It has been reported that CXCL12 potentiates to induce platelet aggregation in cooperation with agonists including collagen. However, the precise roles and mechanisms of CXCL12 in human platelet activation are not fully elucidated. In the present study, we investigated the effect of simultaneous stimulation with low doses of collagen and CXCL12 on the activation of human platelets. The simultaneous stimulation with collagen and CXCL12 induced the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble CD40 ligand (sCD40L) from human platelets in addition to their aggregation, despite the fact that the simultaneous stimulation with thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP), and CXCL12 had little effects on the platelet aggregation. The agonist of Glycoprotein (GP) â…¥ convulxin and CXCL12 also induced platelet aggregation synergistically. The monoclonal antibody against CXCR4 but not CXCR7 suppressed the platelet aggregation induced by simultaneous stimulation with collagen and CXCL12. The phosphorylation of p38 mitogen-activated protein kinase (MAPK), but not p44/p42 MAPK, was induced by the simultaneous stimulation. In addition, the simultaneous stimulation with collagen and CXCL12 induced the phosphorylation of HSP27 and the subsequent release of phosphorylated-HSP27 from human platelets. SB203580, a specific inhibitor of p38 MAPK, attenuated the platelet aggregation, the phosphorylation of p38 MAPK and HSP27, the PDGF-AB secretion, the sCD40L release and the phosphorylated-HSP27 release induced by the simultaneous stimulation with collagen and CXCL12. These results strongly suggest that collagen and CXCL12 in low doses synergistically act to induce PDGF-AB secretion, sCD40L release and phosphorylated-HSP27 release from activated human platelets via p38 MAPK activation

    Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase.

    No full text
    Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK

    Effect of YM-08 on the PGE<sub>1</sub>-stimulated IL-6 release in MC3T3-E1 cells.

    No full text
    The cultured cells were pretreated with 10 μM of YM-08 for 60 min and then stimulated with 10 μM of PGE1 or vehicle for 48 h. IL-6 concentrations of the culture medium were determined by ELISA. Each value represents the mean ± SEM of triplicate determinations from three independent cell preparations. *p †p 1 alone.</p
    corecore