202 research outputs found

    An expression profile analysis of ES cell-derived definitive endodermal cells and Pdx1-expressing cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We developed an efficient <it>in vitro </it>method to differentiate mouse ES cells into the definitive endoderm (DE) and then Pdx1-expressing pancreatic lineages using mesodermal-derived supporting cells, M15. Using this method, resulting ES cell-derived DE and Pdx1-expressing cells were isolated by cell sorting, and their gene expression profiles were investigated with DNA microarray. Genes that were specifically expressed in DE and/or in Pdx1-expressing cells were extracted and their expression patterns in normal embryonic development were studied.</p> <p>Results</p> <p>Genes whose expression increased in DE and Pdx1 positive cells compared to the undifferentiated ES cells were chosen and <it>in situ </it>hybridizations were performed. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 embryos. Among those genes expressed were <it>Foxq1, CpM, Foxp4, Pcdh1, and Zmiz1</it>, which were previously reported in other endodermal tissues. Genes, such as <it>Parm1, Tmem184a, Hipk2 </it>and <it>Sox4 </it>were reported to be expressed during early pancreatic development. <it>Nptx2, C2cd4b, Tcf7l2 and Kiss1r </it>were reported to be associated with beta cell or pancreatic functions in the adult. <it>Akr1c19, Aebp2, Pbxip1 </it>and <it>Creb3l1</it>, were novel and have not been described as being expressed either in DE or the pancreas.</p> <p>Conclusions</p> <p>We identified 27 genes, including 4 novel genes expressed in DE and pancreatic progenitor cells during normal development using an ES cell <it>in vitro </it>differentiation system. These results showed that DE cells and Pdx1/GFP-expressing cells obtained from our M15 based differentiation method mimic cells during the normal developmental processes. Additionally, ES cells are an excellent model for studies of early developmental processes.</p

    Molecular cloning and expression profile of Xenopus calcineurin A subunit11The nucleotide sequence of XCnA has been deposited in DDBJ/DMBL/GenBank DNA database under the accession number AB037146.

    Get PDF
    AbstractWe have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAα isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca2+. Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium

    Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation

    Get PDF
    AbstractAlthough progresses in developing differentiation procedures have been achieved, it remains challenging to generate hES/iPS cell-derived mature hepatocytes. We performed knock-in of a monomeric Kusabira orange (mKO1) cassette in the albumin (ALB) gene, in human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells, with the use of the helper-dependent adenovirus vector (HDAdV). Upon induction into the hepatic lineages, these knock-in hES/iPS cells differentiated into cells that displayed several known hepatic functions. The mKO1 knock-in (ALB/mKo1) hES/hiPS cells were used to visualize hepatic differentiation in vitro. mKO1 reporter expression recapitulated endogenous ALB transcriptional activity. ALB/mKo1 [Hi] population isolated by flow cytometry was confirmed to be enriched with ALB mRNA. Expression profile analyses revealed that characteristic hepatocyte genes and genes related to drug metabolism and many aspects of liver function were highly enriched in the ALB/mKo1 [Hi] population. Our data demonstrate that ALB/mKo1 knock-in hES/iPS cells are valuable resources for monitoring in vitro hepatic differentiation, isolation and analyses of hES and hiPS cells-derived hepatic cells that actively transcribing ALB. These knock-in hES/iPS cell lines could provide further insights into the mechanism of hepatic differentiation and molecular signatures of the hepatic cells derived from hES/iPS cells

    Methionine Metabolism Regulates Maintenance and Differentiation of Human Pluripotent Stem Cells

    Get PDF
    SummaryMouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are in a high-flux metabolic state, with a high dependence on threonine catabolism. However, little is known regarding amino acid metabolism in human ESCs/iPSCs. We show that human ESCs/iPSCs require high amounts of methionine (Met) and express high levels of enzymes involved in Met metabolism. Met deprivation results in a rapid decrease in intracellular S-adenosylmethionine (SAM), triggering the activation of p53-p38 signaling, reducing NANOG expression, and poising human iPSC/ESCs for differentiation, follow by potentiated differentiation into all three germ layers. However, when exposed to prolonged Met deprivation, the cells undergo apoptosis. We also show that human ESCs/iPSCs have regulatory systems to maintain constant intracellular Met and SAM levels. Our findings show that SAM is a key regulator for maintaining undifferentiated pluripotent stem cells and regulating their differentiation

    DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers

    Get PDF
    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes

    Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster

    Get PDF
    We analyzed the effects of dopamine signaling on the temporal organization of rest and activity in Drosophila melanogaster. Locomotor behaviors were recorded using a video-monitoring system, and the amounts of movements were quantified by using an image processing program. We, first, confirmed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bout durations did not with a strict method described by Clauset et al. We also studied the effects of circadian rhythm and ambient temperature on rest bouts and activity bouts. The fraction of activity significantly increased during subjective day and at high temperature, but the power-law exponent of the rest bout distribution was not affected. The reduction in rest was realized by reduction in long rest bouts. The distribution of activity bouts did not change drastically under the above mentioned conditions. We then assessed the effects of dopamine. The distribution of rest bouts became less long-tailed and the time spent in activity significantly increased after the augmentation of dopamine signaling. Administration of a dopamine biosynthesis inhibitor yielded the opposite effects. However, the distribution of activity bouts did not contribute to the changes. These results suggest that the modulation of locomotor behavior by dopamine is predominantly controlled by changing the duration of rest bouts, rather than the duration of activity bouts

    The Role of CXCL12-CXCR4 Signaling Pathway in Pancreatic Development

    No full text
    <p>Chemokine (C-X-C motif) receptor 4 (CXCR4) is the receptor for chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal derived factor-1, Sdf1). CXCR4, a protein consisting 352 amino acids, is known to transduce various signals such as cell differentiation, cell survival, cell proliferation, cell chemotaxis and apoptosis [1, 2]. The expression of CXCR4 is observed in embryonic stem cells, blood cells, haematopoietic stem cells, endothelial cells, angioblasts and smooth muscle cells [3-9]. The CXCL12-CXCR4 signaling pathway has very important roles in the embryonic development. Mutant mice for <i>CXCL12</i> or<i> CXCR4</i> genes showed lethality due to defects in neurogenesis, angiogenesis, cardiogenesis, myelopoiesis, lymphopoiesis and germ cell development [10-13]. Recently, we reported that CXCL12-CXCR4 signaling pathway has a crucial role in regional specification of the gut endoderm during early development [14]. Here, we would like to focus on the role of CXCL12-CXCR4 signaling pathway in pancreatic development and summarize recent findings of its role in the induction of the pancreatic progenitor cells.</p

    The Role of CXCL12-CXCR4 Signaling Pathway in Pancreatic Development

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.07.02; Accepted: 2012.09.13; Published: 2013.01.12 Chemokine (C-X-C motif) receptor 4 (CXCR4) is the receptor for chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal derived factor-1, Sdf1). CXCR4, a protein consisting 352 amino acids, is known to transduce various signals such as cell differentiation, cell survival, cell proliferation, cell chemotaxis and apoptosis [1, 2]. The expression of CXCR4 is observed in embryonic stem cells, blood cells, haematopoietic stem cells, endothelial cells, angioblasts and smooth muscle cells [3-9]. The CXCL12-CXCR4 signaling pathway has very important roles in the embryonic development. Mutant mice for CXCL12 or CXCR4 genes showed lethality due to defects in neurogenesis, angiogenesis, cardiogenesis, myelopoiesis, lymphopoiesis and germ cell development [10-13]. Recently, we reported that CXCL12-CXCR4 signaling pathway has a crucial role in regional specification of the gut endoderm during early development [14]. Here, we would like to focus on the role of CXCL12-CXCR4 signaling pathway in pancreatic development and summarize recent finding

    Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate

    Get PDF
    We have discovered that angioblasts trigger an early inductive event in pancreatic differentiation. This event occurs soon after gastrulation, before the formation of blood vessels. Morphological studies revealed that Lmo2-expressing angioblasts reside in proximity to the somitic mesoderm and the gut endoderm from which pancreatic progenitors arise. The chemokine ligand CXCL12 expressed in the gut endoderm functions to attract the angioblasts that express its receptor CXCR4. Angioblasts then signal back to the gut endoderm to induce Pdx1 expression. Gain-of-function and loss-of-function experiments for CXCL12 and CXCR4 were performed to test their function in blood vessel formation and pancreatic differentiation. The ectopic expression of Cxcl12 in the endoderm attracted the angioblasts and induced ectopic Pdx1 expression, resulting in an expanded pancreatic bud and an increased area of insulin-expressing cells. By contrast, in chick embryos treated with beads soaked in AMD3100, an inhibitor of CXCR4, the migration of angioblasts towards the Cxcl12-expressing gut endoderm was arrested, causing a malformation of blood vessels. This led to the generation of a smaller pancreatic bud and a reduced area of insulin-expressing cells. Taken together, these results indicate that the gut endoderm and angioblasts attract each other through reciprocal CXCL12 and CXCR4 signaling. This has a pivotal role in the fate establishment of the pancreatic progenitor cells and in the potentiation of further differentiation into endocrine β-cells
    • …
    corecore