5 research outputs found

    Climate Change Impacts on Rice Farming Systems in Northwestern Sri Lanka

    Get PDF
    Sri Lanka has achieved tremendous progress since 1950 in crop production and food availability. Yields grew at an impressive rate until leveling off in the mid-eighties. Sri Lanka's population is anticipated to grow in the coming decades, creating an ever-greater demand for food security on the household, sub-district, regional, and national scales.The agricultural sector in Sri Lanka is vulnerable to climate shocks. An unusual succession of droughts and floods from 2008 to 2014 has led to both booms and busts in agricultural production, which were reflected in food prices. In both instances, the majority of farmers and consumers were adversely affected.At present the rice-farming systems are under stress due to inadequate returns for the farmers and difficulty in coping with shocks due to climate, pests, and diseases, and prices for produce. There are government price-support mechanisms, fertilizer-subsidy schemes, and crop insurance schemes, but the levels of the supports are modest and often do not effectively reach the farmers

    Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design

    No full text
    © 2014 American Chemical Society. Energy Frontier Research Centers have been developed by the Department of Energy to accelerate research synergism among experimental and theoretical scientists in catalysis. The overall goal is to advance tools of synthesis, characterization, and computation of solid catalysts to design and predict catalytic properties at the atomic level. The Center for Atomic-Level Catalyst Design (CALC-D) has the goal of significantly advancing: (a) the tools of materials synthesis, allowing catalysts identified by computation to be prepared with atomic-level precision, (b) characterization methods such as advanced spectroscopy to understand surface structures of the working catalyst unambiguously, and (c) the ability of computational catalysis to accurately model reactions at working conditions
    corecore