69,700 research outputs found

    Laminar and turbulent flows over spherically blunted cone and hyperboloid with massive surface blowing

    Get PDF
    Numerical solutions are presented for the flow over a spherically blunted cone and hyperboloid with massive surface blowing. Time-dependent viscous shock-layer equations are used to describe the flow field. The boundary conditions on the body surface include a prescribed blowing-rate distribution. The governing equations are solved by a time-asymptotic finite-difference method. Results presented here are only for a perfect gas-type flow at zero angle of attack. Both laminar and turbulent flow solutions are obtained. It is found that the effect of the surface blowing on the laminar flow field is to smooth out the curvature discontinuity at the sphere-cone juncture point, which results in a positive pressure gradient over the body. The shock slope increases on the downstream portion of the body as the surface blowing rate is increased. The turbulent flow with surface blowing is found to redevelop a boundary-layer-like region near the surface. The effects of this boundary-layer region on the flow field and heating rates are discussed

    Landau diamagnetism revisited

    Get PDF
    The problem of diamagnetism, solved by Landau, continues to pose fascinating issues which have relevance even today. These issues relate to inherent quantum nature of the problem, the role of boundary and dissipation, the meaning of thermodynamic limits, and above all, the quantum-classical crossover occasioned by environment-induced decoherence. The Landau Diamagnetism provides a unique paradigm for discussing these issues, the significance of which are far-reaching. Our central result is a remarkable one as it connects the mean orbital magnetic moment, a thermodynamic property, with the electrical resistivity, which characterizes transport properties of materials.Comment: 4 pages, 1 figur

    DSDV, DYMO, OLSR: Link Duration and Path Stability

    Full text link
    In this paper, we evaluate and compare the impact of link duration and path stability of routing protocols; Destination Sequence Distance vector (DSDV), Dynamic MANET On- Demand (DYMO) and Optimized Link State Routing (OLSR) at different number of connections and node density. In order to improve the efficiency of selected protocols; we enhance DYMO and OLSR. Simulation and comparison of both default and enhanced routing protocols is carried out under the performance parameters; Packet Delivery Ratio (PDR), Average End-to End Delay (AE2ED) and Normalized Routing Overhead (NRO). From the results, we observe that DYMO performs better than DSDV, MOD-OLSR and OLSR in terms of PDR, AE2ED, link duration and path stability at the cost of high value of NRO

    Flow-induced voltage and current generation in carbon nanotubes

    Get PDF
    New experimental results, and a plausible theoretical understanding thereof, are presented for the flow-induced currents and voltages observed in single-walled carbon nanotube samples. In our experiments, the electrical response was found to be strongly sublinear -- nearly logarithmic -- in the flow speed over a wide range, and its direction could be controlled by an electrochemical biasing of the nanotubes. These experimental findings are inconsistent with the conventional idea of a streaming potential as the efficient cause. Here we present a new, physically appealing, Langevin-equation based treatment of the nanotube charge carriers, assumed to be moving under coulombic forcing by the correlated ionic fluctuations, advected by the liquid in flow. The resulting 'Doppler-shifted' force-force correlation, as seen by the charge carriers drifting in the nanotube, is shown to give a strongly sublinear response, broadly in agreement with experiments.Comment: 11 pages including 3 figures. To appear in Phys. Rev B (2004

    On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

    Full text link
    Recently, Gupta et.al. [GKKS2013] proved that over Q any nO(1)n^{O(1)}-variate and nn-degree polynomial in VP can also be computed by a depth three ΣΠΣ\Sigma\Pi\Sigma circuit of size 2O(nlog3/2n)2^{O(\sqrt{n}\log^{3/2}n)}. Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ\Sigma\Pi\Sigma circuit that computes DetnDet_n (or PermnPerm_n) must be of size 2Ω(n)2^{\Omega(n)} [GK1998]. In this paper, we prove that over fixed-size finite fields, any ΣΠΣ\Sigma\Pi\Sigma circuit for computing the iterated matrix multiplication polynomial of nn generic matrices of size n×nn\times n, must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the nO(1)n^{O(1)}-variate and nn-degree polynomials in VP by depth 3 circuits of size 2o(nlogn)2^{o(n\log n)}. The result [GK1998] can only rule out such a possibility for depth 3 circuits of size 2o(n)2^{o(n)}. We also give an example of an explicit polynomial (NWn,ϵ(X)NW_{n,\epsilon}(X)) in VNP (not known to be in VP), for which any ΣΠΣ\Sigma\Pi\Sigma circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The polynomial we consider is constructed from the combinatorial design. An interesting feature of this result is that we get the first examples of two polynomials (one in VP and one in VNP) such that they have provably stronger circuit size lower bounds than Permanent in a reasonably strong model of computation. Next, we prove that any depth 4 ΣΠ[O(n)]ΣΠ[n]\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]} circuit computing NWn,ϵ(X)NW_{n,\epsilon}(X) (over any field) must be of size 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)}. To the best of our knowledge, the polynomial NWn,ϵ(X)NW_{n,\epsilon}(X) is the first example of an explicit polynomial in VNP such that it requires 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)} size depth four circuits, but no known matching upper bound

    On Link Availability Probability of Routing Protocols for Urban Scenario in VANETs

    Full text link
    This paper presents the link availability probability. We evaluate and compare the link availability probability for routing protocols; Ad hoc On-demand Distance vector (AODV), Dynamic Source Routing (DSR) and Fisheye State Routing (FSR) for different number of connections and node density. A novel contribution of this work is enhancement in existing parameters of routing protocols; AODV, DSR and FSR as MOD-AODV, MOD-DSR and MOD-FSR. From the results, we observe that MOD-DSR and DSR outperform MOD-AODV, AODV, MODOLSR and OLSR in terms of Packet Delivery Ratio (PDR), Average End-to End Delay (AE2ED), link availability probability at the cost of high value of Normalized Routing Overhead (NRO).Comment: IEEE Conference on Open Systems (ICOS2012)", Kuala Lumpur, Malaysia, 201

    Femtosecond Photoexcited Carrier Dynamics in Reduced Graphene Oxide Suspensions and Films

    Get PDF
    We report ultrafast response of femtosecond photoexcited carriers in single layer reduced graphene oxide flakes suspended in water as well as few layer thick film deposited on indium tin oxide coated glass plate using pump-probe differential transmission spectroscopy at 790 nm. The carrier relaxation dynamics has three components: ~200 fs, 1 to 2 ps, and ~25 ps, all of them independent of pump fluence. It is seen that the second component (1 to 2 ps) assigned to the lifetime of hot optical phonons is larger for graphene in suspensions whereas other two time constants are the same for both the suspension and the film. The value of third order nonlinear susceptibility estimated from the pump-probe experiments is compared with that obtained from the open aperture Z-scan results for the suspension.Comment: 4 pages, 4 figures, to appear in International Journal of Nanoscience (IJN), 201
    corecore