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Flow-induced voltage and current generation in carbon nanotubes
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Abstract

New experimental results, and a plausible theoretical understanding thereof, are presented for

the flow-induced currents and voltages observed in single-walled carbon nanotube samples. In our

experiments, the electrical response was found to be sublinear – nearly logarithmic – in the flow

speed over a wide range, and its direction could be controlled by an electrochemical biasing of the

nanotubes. These experimental findings are inconsistent with the conventional idea of a streaming

potential as the efficient cause. Here we present Langevin-equation based treatment of the nanotube

charge carriers, assumed to be moving in the fluctuating field of ions in the flowing liquid. The

resulting “Doppler-shifted” force-force correlation, as seen by the charge carriers drifting in the

nanotube, is shown to give a sublinear response, broadly in agreement with experiments.
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Single-walled carbon nanotubes (SWNT) in contact with a flowing liquid provide a unique

microfluidic system that offers a large interfacial area of intimate atomic contact between

the liquid and the solid substrate. This can lead to a strong coupling of the charge carriers

in the nanotube to the particles in the flowing liquid, more so if the liquid is polar or ionic

in character. The effect of this coupling is expected to be further enhanced due to charge

carrier entrainment because of the quasi-one dimensionality of the conducting nanotubes.



otubes are kept in their place by a supporting insulating substrate. The electrical signal is

measured along the flow direction (uL) as shown Fig. 1. The other experimental details are

as in [1]. A sensor with a minimal contact resistance of ∼25Ω (found from four- probe mea-

surements) was used in the experiments so that the short-circuit current could be measured.

The short-circuit current (open-circuit voltage) was measured by connecting the microam-

meter (millivoltmeter) across the SWNT sample. The resistance (two-probe) of the device,

measured with the sensor dipped in the liquid was found to be ∼ 70 Ω. Figure 2 shows the

dependence of the induced voltage and current on the flow velocity uL. The solid line is a fit

to the empirical relation I = αI log(βI uL + 1), with αI = 0.02µA and βI = 4.8 × 104s/cm.

The voltage also fits the empirical relation V = αV log(βV uL + 1), where αV = 1.4µV and

βV = 4.8×104s/cm. It can readily be seen that αV = αI ×R, i.e., the resistance encountered

is precisely the resistance (2 probe) of the device. This is an important point to note: if an

electrokinetic mechanism were operating, the resistance obtained would have been orders of

magnitude higher, i.e., equal to that of the electrolyte (∼ 0.1MΩ)[5]. This in itself rules out

quite decisively the electrokinetic mechanism of voltage generation. Next, we consider the

measured direction of the flow induced current with respect to the flow direction as a func-

tion of the bias voltage VB (see inset of Fig.3). This potential biases the SWNT with respect

to the Au-reference electrode immersed in the flow chamber close to sample as shown in the

inset of Fig.(3). The dependence of the sign and the magnitude of the flow-induced voltage

on VB for an aqueous solution of 0.01 M KCl (conductivity 1.4 mS/m) and for a fixed flow

speed of 0.04 cm/s is shown in Fig.(3). It is seen that the flow-induced signal is positive,

i.e.,



nanotube charge carriers by the liquid flow. The dependence of the flow-induced signal on

the concentration of different types of ions in the liquid is, however, found to be complicated



satisfies uD/τD = (uL − uD)/τL giving

uD = uL/(1 + τL/τD). (1)

Equation (1) is merely a restatement of the condition of frictional force-balance in the steady

state. It would appear to give an induced short-circuit current (equivalently, an open circuit

voltage via the nanotube resistance) along the nanotube which is linear in the flow velocity.

The nonlinearity is, however, really hidden in the uL dependence of the relaxation time

τL that we will now try to make explicit. It may be noted here that we are assuming,

for simplicity, a uniform liquid flow without the hydrodynamic complications of a no-slip

boundary condition.

In a simple caricature of the real situation then, consider the ionic density in the liquid,

fluctuating thermally and flowing past the nanotube at a mean velocity uLẑ, producing

thereby a fluctuating couloumbic potential φ(r, t), at a point r at time t. We are, of course,

interested in the case of r lying on the z axis i.e., r = (0, 0, z) (in the 1D nanotube).

For the space-time correlation function 〈φ(0, 0)φ(r, t)〉 ≡ G0(r, t) in the mean rest frame

of the ions, the charge carriers in the nanotube see this correlation Galilean boosted to

G(r, t) ≡ G0(r − ẑvt, t) with v = uL − uD. This Galilean boost (Doppler shift) is the key

physical point of our treatment. At uL = 0, the fluctuation-dissipation theorem (FDT) tells

us that the coefficient of the zero-frequency friction to the motion of the charge carriers

in the nanotubes, arising from the ionic thermal fluctuations, is proportional to the time

integral of this on-site force-force correlation function. If we assume this relation even for

uL 6= 0 we have

1/τL = 1/(mekBT )
∫

∞

−∞

〈eEz(r − ẑvt, t)eEz(r, 0)〉dt. (2)

Here Ez is the z-component of the coulombic (electric ) field due to the ions; me is the

mass of the charge carrier with e the electronic charge; kB is the Boltzman constant, and T

the absolute temperature. We re-write the right hand side of Eqn.(2) in Fourier (q)- space,

expressing the above force-force correlator in terms of the ionic charge-densities ρ(r, t) using

Ez(q, t) = −iqzφ(q, t) and −q2φ(q) = eρ(q, t)/ǫ, where ǫ is the solvent dielectric constant,

and obtain straightforwardly
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where x = v/Dκ, and ρ0 is the mean ionic number density. In Eqns. (3) and (4) we

have used the Debye -screened form for the static charge structure factor S0

q = 〈ρqρ−q〉 =

q2/(q2 + κ2) with screening length κ−1 as the inverse of the Debye screening length and a

diffusive form 1/τq = Dq2 [7] with D the ionic diffusion constant. It can be seen at once

that Eqn.(4) , taken in conjunction with Eqn.(2), gives a drift velocity uD(and therefore the

short-circuit current) as a sublinear function of the flow velocity uL. This sublinearity is a



of its Fourier transform Cq(t) yields

uD =
1

ζ2

∫ Λ

−Λ

dq

(2π)3

∫

∞

0
dt〈eiqz[z(t)−z(t′)]〉iqzCq(t) (7)

where Λ is an ultraviolet cut-off of the order of an inverse ionic diameter. As in the

preceding heuristic treatment, let us take the correlation Cq(t) of the ions to be the Galilean

boost, with velocity uL, of an equilibrium correlation function C0
q (t), with a relaxation time

τq:

Cq(t) = C0
q (t)e

−iqzuLt ≡ C0
q e

−iqzuLte−t/τq , (8)

where C0
q is the equilibrium equal-time correlation function of the force fluctuations. This

form, despite its undeniable limitations, is the simplest way to capture the basic physics

of ions moving past the nanotube, and admits an essentially analytical treatment. As

before, the force-force correlation C0
q can be expressed in terms of the ionic charge-density

correlation, which is known as an input from the liquid state(dilute ionic solution) theory,

namely that C0
q ∝ (q2

z/q
4)S0

q with the ionic charge structure factor S0
q = q2/(q2 + κ2).

Note the factor (q2
z/q

4) arising from the gradient (∂/∂z) and the Laplacian(∇2) in q- space.

Replacing z(t) in Eqn.(7) by its mean uDt for simplicity, we obtain the compact expression

uD = vα
∫ Λ

−Λ

dq

(2π)3

(

1

q2
zv

2 + τ−2
q

)(

q2
z

q2 + κ2

)

, (9)

for the drift velocity of the charge carriers in the nanotube, where as before v = uL − uD, α

is a lumped constant of proportionality that depends on the parameters of the liquid-state

correlation function input used above. With the ultraviolet cut-off (Λ) set to infinity, and [7]

with 1/τq = Dq2, Eqn. (9) has precisely the form of Eqn.(1) taken in conjunction with the

Eqn.(4), allowing us thereby to identify the integral on its right-hand side essentially with

τD/τL. This gives us an expression for the flow-speed dependence of τL, and thus finally an

analytic expression for the charge drift velocity (uD) as a function of the liquid flow velocity

(uL). This reaffirms our heuristic argument given at the beginning.

We close by summarizing the main points of our work. First, on the experimental side,

we have clearly shown that the liquid flow produces not only a voltage (i.e., not merely a

capacitive charging), but a short-circuit current as well in the nanotube; that both have a

sublinear dependence on the imposed flow-speed; and that the voltage/current ratio cor-

responds to the nanotube sample resistance. These observations are incompatible with an

electrokinetic origin for the (electronic) current in the nanotube. On the theoretical side,

7



we have proposed a theory wherein the current is essentially a statistical consequence of the

flow-induced asymmetry in the correlation of the ions, in the ambient fluid as seen by the

charge carriers in the nanotube. Importantly, our theory predicts in general a sublinear be-

havior for the electrical response, with a linear regime at only the smallest values of imposed

flow. The extended logarithmic regime seen in experiments can presumably be rationalized

in detail with particular forms for the correlation function (C0
q ) and the relaxation time

(τq), as inputs to be taken from the liquid state (dilute ionic solution) theory. Moreover,

a realistic treatment will require taking into account details of the complex, hydrophobic,

inter-nanotube micro-fluidic environment of our mat samples. Thus, very specifically, the

no-slip boundary condition would imply a decreasing velocity of the flow nearer the nanotube

(the shear flow).This decrease in the flow velocity will,however,be offset by the corresponding

increase in its effectiveness(via the screened coulombic forcing) closer to the interface.The

resulting levelling is expected to broaden the sublinear response and thus improve agreement

with the experiment. Our main point, however, is that the experiments show sublinear be-

havior, which is inconsistent within existing theories of flow-induced voltages and currents

in nanotubes, and that our approach naturally and inevitably leads to strong sublinearity.

Finally, we emphasize that the flow-induced asymmetry of the random fluctuations is key to

the charge-carrier drift (drag) mechanism in our theory. In this broad sense our approach

here subsumes the asymmetric fluctuating ratchets invoked earlier [1] in a general way. In

this connection, reference must be made to the idea of a drag (shear) induced by the relative

motion between material surfaces, where the Doppler shifted and aberrated photonic fluc-

tuations, e.g. zero-point photons, have been invoked very effectively [9, 10] . We would also

like here to add that more than one mechanisms could very well be at work in these sys-

tems. For example, in a recent publication Persson et al [11] have invoked a combination of

frictional stick-slip and barrier-hopping to explain the observed phenomenon of flow-induced

voltages in SWNT. The one we propose here seems particularly robust and general, and we

look forward to experimental tests, especially of the predicted saturation of the electrical

response at high flow speeds.
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FIG. 1: Schematic sketch of the nanotube flow sensor placed along the flow direction(uL). SWNT

bundles are packed between two metal electrodes. The insulating substrate keeps the SWNT in

place. The electrical leads are taken out from the metal electrodes.
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FIG. 2: Voltage (full circles) and current (open circles) as functions of flow speed uL. The solid

line is a fit to the logarithmic function as explained in the text. Inset shows the theoretical

plot of current (I = neuDA) versus flow speed based on Eqn.(1,4) for typical choice of parameters:

T=300K; ǫ=80( CGS units); Dκ = 10−4 cm/s; τD = 10−16 s; ρ0 = 1013 cm−3; charge carrier density

in nanotubes (n = 1018 cm−3); cross-sectional-area (A) = 10−3 cm2. The strong sublinearity is

clearly seen.

11



FIG. 3: Flow-induced voltage as a function of bias VB . Inset: schematic of electrochemical biasing

of the nanotubes; CE is the counterelectrode.The solid line is a guide to the eye
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