76,651 research outputs found

    Growth of covariant perturbations in the contracting phase of a bouncing universe

    Full text link
    In this paper we examine the validity of the linear perturbation theory near a bounce in the covariant analysis. Some linearity parameters are defined to set up conditions for a linear theory. Linear evolution of density perturbation and gravitational waves have been computed previously. We have calculated the vector and scalar induced parts of the shear tensor. For radiationlike and dustlike single fluid dominated collapsing Friedmann-Lemaitre-Robertson-Walker background it is shown that the linearity conditions are not satisfied near a bounce.Comment: 9 pages, final versio

    Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    Get PDF
    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites

    Barrier modification in sub-barrier fusion reactions using Wong formula with Skyrme forces in semiclassical formalism

    Full text link
    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended â„“\ell-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra ``barrier lowering" or ``barrier narrowing" for a best fit to data. For the 64^{64}Ni+100^{100}Mo reaction, the â„“\ell-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64^{58,64}Ni+58,64^{58,64}Ni, fits the data best for SIII force. Hence, the barrier modification effects in â„“\ell-summed Wong expression depends on the choice of Skyrme force in extended ETF method.Comment: INPC2010, Vancouver, CANAD
    • …
    corecore