73,432 research outputs found

    Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    Full text link
    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208{}^{208}Pb and 48{}^{48}Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48{}^{48}Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.Comment: A contribution to the upcoming EPJA Special Volume on Nuclear Symmetry Energ

    Characterization of GaN Nanorods Fabricated Using Ni Nanomasking and Reactive Ion Etching: A Top-Down Approach

    Get PDF
    Large thermal mismatch between GaN surface and sapphire results in compressive stress in Gallium Nitride (GaN) layer which degrades the device performance. Nanostructuring the GaN can reduce this stress leading to reduction in Quantum Confined Stark Effect. Aligned GaN nanorods based nanodevices have potential applications in electronics and optoelectronics. This paper describes the fabrication of GaN nanorods using Ni nanomasking and reactive ion etching. The morphology of GaN nanorods was studied by field emission scanning electron microscopy. The optical properties of GaN nanorods were studied by Cathodoluminescence (CL) spectroscopy. CL results revealed the existence of characteristic band-edge luminescence and yellow band luminescence. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3099

    A Novel Global MPP Tracking of Photovoltaic System Based on Whale Optimization Algorithm

    Full text link
    To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG) systems are to be operated at their maximum power point (MPP) under both variable climatic and partial shaded condition (PSC). From literature most of conventional MPP tracking (MPPT) methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG) system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA) is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented. From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed.Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available onlineHow to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016) A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3), 225-232.http://dx.doi.org/10.14710/ijred.5.3.225-23
    • …
    corecore