9,937 research outputs found

    Intermodal entanglement in Raman processes

    Full text link
    The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here to investigate the possibility of obtaining intermodal entanglement between different modes involved in the Raman processes (e.g. pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode). Intermodal entanglement is reported between a) pump mode and anti-Stokes mode, b) pump mode and vibration (phonon) mode c) Stokes mode and vibration phonon mode, d) Stokes mode and anti-stokes mode in the stimulated Raman processes for the variation of the phase angle of complex eigenvalue α1\alpha_{1} of pump mode aa. Some incidents of intermodal entanglement in the spontaneous and the partially spontaneous Raman processes are also reported. Further it is shown that the specific choice of coupling constants may produce genuine entanglement among Stokes mode, anti-Stokes mode and vibration-phonon mode. It is also shown that the two mode entanglement not identified by Duan's criterion may be identified by Hillery-Zubairy criteria. It is further shown that intermodal entanglement, intermodal antibunching and intermodal squeezing are independent phenomena.Comment: 11 pages, 4 figure

    Generating and analyzing synthetic finger vein images

    Get PDF
    Abstract: The finger-vein biometric offers higher degree of security, personal privacy and strong anti-spoofing capabilities than most other biometric modalities employed today. Emerging privacy concerns with the database acquisition and lack of availability of large scale finger-vein database have posed challenges in exploring this technology for large scale applications. This paper details the first such attempt to synthesize finger-vein images and presents analysis of synthesized images for the biometrics authentication. We generate a database of 50,000 finger vein images, corresponding to 5000 different subjects, with 10 different synthesized finger-vein images from each of the subject. We use tractable probability models to compare synthesized finger-vein images with the real finger- vein images for their image variability. This paper also presents matching accuracy using the synthesized finger-vein database from 5000 different subjects, using 225000 genuine and 1249750000 impostor matching scores, which suggests significant promises from this finger-vein biometric modality for large scale biometrics applications

    Impact of diabetes mellitus on ventricular structure, arterial stiffness, and pulsatile hemodynamics in heart failure with preserved ejection fraction

    Get PDF
    Background-Heterogeneity in the underlying processes that contribute to heart failure with preserved ejection fraction (HFpEF) is increasingly recognized. Diabetes mellitus is a frequent comorbidity in HFpEF, but its impact on left ventricular and arterial structure and function in HFpEF is unknown. Methods and Results-Weassessed the impact of diabetesmellitus on left ventricular cellular and interstitial hypertrophy (assessedwith cardiacmagnetic resonance imaging, including T1mapping pregadolinium and postgadolinium administration), arterial stiffness (assessed with arterial tonometry), and pulsatile arterial hemodynamics (assessed with in-office pressure-flow analyses and 24-hour ambulatory monitoring) among 53 subjects with HFpEF (32 diabetic and 21 nondiabetic subjects). Despite few differences in clinical characteristics, diabetic subjects with HFpEF exhibited a markedly greater left ventricular mass index (78.1 [95% CI, 70.4-85.9] g versus 63.6 [95% CI, 55.8-71.3] g; P=0.0093) and indexed extracellular volume (23.6 [95% CI, 21.2-26.1] mL/m(2) versus 16.2 [95% CI, 13.1-19.4] mL/m(2); P=0.0008). Pronounced aortic stiffening was also observed in the diabetic group (carotid-femoral pulse wave velocity, 11.86 [95% CI, 10.4-13.1] m/s versus 8.8 [95% CI, 7.5-10.1] m/s; P=0.0027), with an adverse pulsatile hemodynamic profile characterized by increased oscillatory power (315 [95% CI, 258-373] mWversus 190 [95% CI, 144-236] mW; P=0.0007), aortic characteristic impedance (0.154 [95% CI, 0.124-0.183] mmHg/mL per second versus 0.096 [95% CI, 0.072-0.121] mm Hg/mL per second; P=0.0024), and forward (59.5 [95% CI, 52.8-66.1] mm Hg versus 40.1 [95% CI, 31.6-48.6] mm Hg; P=0.0010) and backward (19.6 [95% CI, 16.2-22.9] mm Hg versus 14.1 [95% CI, 10.9-17.3] mm Hg; P=0.0169) wave amplitude. Abnormal pulsatile hemodynamics were also evident in 24-hour ambulatory monitoring, despite the absence of significant differences in 24-hour systolic blood pressure between the groups. Conclusions-Diabetes mellitus is a key determinant of left ventricular remodeling, arterial stiffness, adverse pulsatile hemodynamics, and ventricular-arterial interactions in HFpEF

    Scale dependence of cloud microphysical response to turbulent entrainment and mixing

    Get PDF
    The dynamics and lifetime of atmospheric clouds are tightly coupled to entrainment and turbulent mixing. This paper presents direct numerical simulations of turbulent mixing followed by droplet evaporation at the cloud‐clear air interface in a meter‐sized volume, with an ensemble of up to almost half a billion individual cloud water droplets. The dependence of the mixing process on domain size reveals that inhomogeneous mixing becomes increasingly important as the domain size is increased. The shape of the droplet size distribution varies strongly with spatial scale, with the appearance of a pronounced negative exponential tail. The increase of relative dispersion during the transient mixing process is strongly dependent on the scale of the mixing and therefore on the Damköhler number, defined as the turbulence large‐eddy time scale divided by the cloud supersaturation relaxation time

    Association Rules for Web Data Mining in WHOWEDA

    Get PDF
    The authors discuss association rules which can be discovered from Web data. The association rules are discussed within the scope of our WHOWEDA (warehouse of Web data) project. WHOWEDA is supported by a Web data model and a set of algebraic operators. The Web data model allows a uniform and integrated view of Web data gathered using a user\u27\u27s query graph. A user\u27\u27s query graph describes the query by example (what the user perceives as the query) and the Web coupling query gathers instances of such a query graph from the Web and stores them in the form of subgraphs (called Web tuples) in a Web table. We discuss association rules within this domain. An association rule defines an association between the nodes and links attributes of Web tuples within a Web table. There are two different classes of association rules that can be developed from data in a Web table. There are two different classes of association rules that can be developed from data in a Web table. Node-to-node associations are those rules that relate the content (defined by metadata attributes) between two or more nodes within a Web tuple. Link associations are rules that show the connectivity of different URLs. Distinguishing the two types of associations provides a view of the structure of the Web data. The goal of performing Web association mining on Web data is to better organize searching patterns through hyperlinked document

    High-Fidelity Aeroelastic Computations of a Flapping Wing with Spanwise Flexibility

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90712/1/AIAA-2011-570-494.pd

    Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3.

    Get PDF
    The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p
    corecore