5 research outputs found

    The Tools for Integrated Management of Childhood Illness (TIMCI) study protocol: a multi-country mixed-method evaluation of pulse oximetry and clinical decision support algorithms.

    Get PDF
    Effective and sustainable strategies are needed to address the burden of preventable deaths among children under-five in resource-constrained settings. The Tools for Integrated Management of Childhood Illness (TIMCI) project aims to support healthcare providers to identify and manage severe illness, whilst promoting resource stewardship, by introducing pulse oximetry and clinical decision support algorithms (CDSAs) to primary care facilities in India, Kenya, Senegal and Tanzania. Health impact is assessed through: a pragmatic parallel group, superiority cluster randomised controlled trial (RCT), with primary care facilities randomly allocated (1:1) in India to pulse oximetry or control, and (1:1:1) in Tanzania to pulse oximetry plus CDSA, pulse oximetry, or control; and through a quasi-experimental pre-post study in Kenya and Senegal. Devices are implemented with guidance and training, mentorship, and community engagement. Sociodemographic and clinical data are collected from caregivers and records of enrolled sick children aged 0-59 months at study facilities, with phone follow-up on Day 7 (and Day 28 in the RCT). The primary outcomes assessed for the RCT are severe complications (mortality and secondary hospitalisations) by Day 7 and primary hospitalisations (within 24 hours and with referral); and, for the pre-post study, referrals and antibiotic. Secondary outcomes on other aspects of health status, hypoxaemia, referral, follow-up and antimicrobial prescription are also evaluated. In all countries, embedded mixed-method studies further evaluate the effects of the intervention on care and care processes, implementation, cost and cost-effectiveness. Pilot and baseline studies started mid-2021, RCT and post-intervention mid-2022, with anticipated completion mid-2023 and first results late-2023. Study approval has been granted by all relevant institutional review boards, national and WHO ethical review committees. Findings will be shared with communities, healthcare providers, Ministries of Health and other local, national and international stakeholders to facilitate evidence-based decision-making on scale-up.Study registration: NCT04910750 and NCT05065320

    Dolutegravir‐induced acquired sideroblastic anemia in a HIV positive patient: A challenging hematologic complication

    No full text
    Key Clinical Message Dolutegravir, the most recent antiretroviral drug with high efficacy, good tolerability, infrequent drug–drug interactions, and a favorable safety profile has not been reported in current literature as a cause of acquired sideroblastic anemia. Here, we present a 35‐year‐old male patient who was diagnosed with acquired sideroblastic anemia to Dolutegravir therapy

    Association of dietary intake with micronutrient deficiency in Indian school children: a cross-sectional study

    No full text
    Adequate nutrition is necessary during childhood and early adolescence for adequate growth and development. Hence, the objective of the study was to assess the association between dietary intake and blood levels of minerals (calcium, iron, zinc, and selenium) and vitamins (folate, vitamin B12, vitamin A, and vitamin D) in urban school going children aged 6–16 years in India, in a multicentric cross-sectional study. Participants were enrolled from randomly selected schools in ten cities. Three-day food intake data was collected using a 24-h dietary recall method. The intake was dichotomised into adequate and inadequate. Blood samples were collected to assess levels of micronutrients. From April 2019 to February 2020, 2428 participants (50⋅2 % females) were recruited from 60 schools. Inadequate intake for calcium was in 93⋅4 % (246⋅5 ± 149⋅4 mg), iron 86⋅5 % (7⋅6 ± 3⋅0 mg), zinc 84⋅0 % (3⋅9 ± 2⋅4 mg), selenium 30⋅2 % (11⋅3 ± 9⋅7 mcg), folate 73⋅8 % (93⋅6 ± 55⋅4 mcg), vitamin B12 94⋅4 % (0⋅2 ± 0⋅4 mcg), vitamin A 96⋅0 % (101⋅7 ± 94⋅1 mcg), and vitamin D 100⋅0 % (0⋅4 ± 0⋅6 mcg). Controlling for sex and socioeconomic status, the odds of biochemical deficiency with inadequate intake for iron [AOR = 1⋅37 (95 % CI 1⋅07–1⋅76)], zinc [AOR = 5⋅14 (95 % CI 2⋅24–11⋅78)], selenium [AOR = 3⋅63 (95 % CI 2⋅70–4⋅89)], folate [AOR = 1⋅59 (95 % CI 1⋅25–2⋅03)], and vitamin B12 [AOR = 1⋅62 (95 %CI 1⋅07–2⋅45)]. Since there is a significant association between the inadequate intake and biochemical deficiencies of iron, zinc, selenium, folate, and vitamin B12, regular surveillance for adequacy of micronutrient intake must be undertaken to identify children at risk of deficiency, for timely intervention

    Prevalence of specific micronutrient deficiencies in urban school going children and adolescence of India: A multicenter cross-sectional study.

    No full text
    IntroductionChildhood and adolescence require adequate amount of micronutrients for normal growth and development. The primary objective of study was to assess the prevalence of deficiencies of Vitamins (Vitamin A, 25 Hydroxy Vitamin D, Vitamin B12 and Folate) and minerals (Calcium, Zinc, Selenium and Iron), among urban school going children aged 6-11 and 12-16 years in ten cities of India. Secondary objective was to find the association between micronutrient deficiencies with sociodemographic and anthropometric indicators.MethodsA multi-center cross-sectional study was conducted across India. Participants in the age groups of 6 to 11 years (group 1) and 12 to 16 years (group 2) were selected from randomly chosen schools from each center. Data on socio economic status, anthropometric measures was collected. Blood samples were collected for biochemical analysis of micronutrients. Point estimates and 95% confidence intervals was used to assess the prevalence of deficiencies. Associations were observed using chi square, student t test and ANOVA test.ResultsFrom April 2019 to February 2020, 2428 participants (1235 in group 1 and 1193 group 2) were recruited from 60 schools across ten cites. The prevalence of calcium and iron deficiency was 59.9% and 49.4% respectively. 25 Hydroxy Vitamin D deficiency was seen in 39.7% and vitamin B12 in 33.4% of subjects. Folate, Selenium and Zinc were deficient in 22.2%, 10.4% and 6.8% of subjects respectively. Vitamin A deficiency least (1.6%). Anemia was prevalent in 17.6% subjects and was more common among females.ConclusionOne or more micronutrient deficiencies are found in almost one half of school going children in urban area. Hence efforts must be made to combat these on priority.Trial registration numberCTRI/2019/02/017783

    Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops

    No full text
    The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.Instituto de PatologĂ­a VegetalFil: Navia, Denise. Embrapa Recursos GenĂ©ticos e Biotecnologia; BrasilFil: Mendonça, Renata Santos de. Embrapa Recursos GenĂ©ticos e Biotecnologia; BrasilFil: Skoracka, Anna. Adam Mickiewicz University. Faculty of Biology. Institute of Environmental Biology. Department of Animal Taxonomy and Ecology; PoloniaFil: SzydƂo, Wiktoria. Adam Mickiewicz University. Faculty of Biology. Institute of Environmental Biology. Department of Animal Taxonomy and Ecology; PoloniaFil: Knihinicki, Danuta. Orange Agricultural Institute. Agricultural Scientific Collections Unit. NSW Department of Primary Industries; AustraliaFil: Hein, Gary L. University of Nebraska at Lincoln; Estados UnidosFil: Pereira, Paulo Roberto Valle da Silva. Embrapa Trigo; BrasilFil: Truol, Graciela Ana Maria. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de PatologĂ­a Vegetal; ArgentinaFil: Lau, Douglas. Embrapa Trigo; Brasi
    corecore