15 research outputs found

    CPAPアドヒランスの予測因子としてのCPAP装着下覚醒時の呼吸不規則性

    Get PDF
    BACKGROUND AND OBJECTIVE: The standard therapy for obstructive sleep apnoea (OSA) is continuous positive airway pressure (CPAP) therapy. However, long-term adherence remains at ~50% despite improvements in behavioural and educational interventions. Based on prior work, we explored whether regularity of breathing during wakefulness might be a physiologic predictor of CPAP adherence. METHODS: Of the 117 consecutive patients who were diagnosed with OSA and prescribed CPAP, 79 CPAP naïve patients were enrolled in this prospective study. During CPAP initiation, respiratory signals were collected using respiratory inductance plethysmography while wearing CPAP during wakefulness in a seated position. Breathing regularity was assessed by the coefficient of variation (CV) for breath-by-breath estimated tidal volume (VT ) and total duration of respiratory cycle (Ttot). In a derivation group (n = 36), we determined the cut-off CV value which predicted poor CPAP adherence at the first month of therapy, and verified the validity of this predetermined cut-off value in the remaining participants (validation group; n = 43). RESULTS: In the derivation group, the CV for estimated VT was significantly higher in patients with poor adherence than with good adherence (median (interquartile range): 44.2 (33.4-57.4) vs 26.0 (20.4-33.2), P 34.0 confirmed to be predicting poor CPAP adherence (sensitivity, 0.78; specificity, 0.83). CONCLUSION: At the initiation of therapy, breathing regularity during wakefulness while wearing CPAP is an objective predictor of short-term CPAP adherence.博士(医学)・乙第1391号・平成29年3月15日© 2016 Asian Pacific Society of RespirologyThis is the peer reviewed version of the following article: Respirology Vol.22 No.2 p.386-393 (2017 Feb), which has been published in final form at http://dx.doi.org/10.1111/resp.12900. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes

    Get PDF
    Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases

    ヒト脂肪由来間葉型幹細胞は、間葉上皮転換によりエラスターゼ誘発マウス肺気腫を改善する

    Get PDF
    Purpose: Chronic obstructive pulmonary disease (COPD) is a worldwide problem because of its high prevalence and mortality. However, there is no fundamental treatment to ameliorate their pathological change in COPD lung. Recently, adipose-derived mesenchymal stem cells (ADSCs) have attracted attention in the field of regenerative medicine to repair damaged organs. Moreover, their utility in treating respiratory diseases has been reported in some animal models. However, the detailed mechanism by which ADSCs improve chronic respiratory diseases, including COPD, remains to be elucidated. We examined whether human ADSCs (hADSCs) ameliorated elastase-induced emphysema and whether hADSCs differentiated into alveolar epithelial cells in a murine model of COPD. Methods: Female SCID-beige mice (6 weeks old) were divided into the following four groups according to whether they received an intratracheal injection of phosphate-buffered saline or porcine pancreatic elastase, and whether they received an intravenous injection of saline or hADSCs 3 days after intratracheal injection; Control group, hADSC group, Elastase group, and Elastase-hADSC group. We evaluated the lung function, assessed histological changes, and compared gene expression between hADSCs isolated from the lung of Elastase-hADSC group and naïve hADSCs 28 days after saline or elastase administration. Results: hADSCs improved the pathogenesis of COPD, including the mean linear intercept and forced expiratory volume, in an elastase-induced emphysema model in mice. Furthermore, hADSCs were observed in the lungs of elastase-treated mice at 25 days after administration. These cells expressed genes related to mesenchymal-epithelial transition and surface markers of alveolar epithelial cells, such as TTF-1, β-catenin, and E-cadherin. Conclusion: hADSCs have the potential to improve the pathogenesis of COPD by differentiating into alveolar epithelial cells by mesenchymal-epithelial transition.博士(医学)・甲第825号・令和4年3月15日© 2021 Fujioka et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php)

    Antiviral Effect of Candies Containing Persimmon-Derived Tannin against SARS-CoV-2 Delta Strain

    No full text
    Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the mouth has the potential to reduce the spread of coronavirus disease 2019 (COVID-19), due to the virus being readily transmitted by dispersed saliva. Persimmon-derived tannin has strong antioxidant and antimicrobial activity owing to its strong adhesion to proteins, and it also exhibited antiviral effects against non-variant and Alpha-variant SARS-CoV-2 in our previous study. In this study, we first demonstrated the antiviral effects of persimmon-derived tannin against the Delta variant of SARS-CoV-2 in vitro via the plaque assay method. We then examined the effects of candy containing persimmon-derived tannin. Remarkably, the saliva samples provided by healthy volunteers while they were eating tannin-containing candy showed that the virus titers of the SARS-CoV-2 Delta variant were suppressed. In addition, we found that the SARS-CoV-2 viral load in saliva from patients with COVID-19 collected immediately after they had eaten the tannin-containing candy was below the level of detection via PCR for SARS-CoV-2. These data suggest that adding persimmon-derived tannin to candy and holding such candy in the mouth is an effective method for inactivating SARS-CoV-2 in saliva, and the application of this approach shows potential for inhibiting the transmission of COVID-19

    Experimental results on the calcium wave propagation induced by a mechanical stimulation to one cell.

    No full text
    <p>(A) Snapshots with an interval of 4.86 s. The scale bar is 100 μm. The ratiometric images () are shown in false color, where blue, green, yellow, and red indicate the increase in intracellular calcium concentration, in this order (see the scale bar on the right). (B) Time change in the calcium concentration is shown in each cell depicted in the left figure. The time when mechanical stimulus was applied is indicated by an upper arrowhead.</p

    Comparison between (A) experimental and (B) numerical results when the strength of the stimulus is varied.

    No full text
    <p>(A) In the experiments, the pressure imparted on the cell was (A-i) 50 hPa and (A-ii) 100 hPa. In the upper figures in (A), snapshots are shown with the time intervals 40.0 s. The scale bars are 50 µm. The ratiometric images () are shown in false color, where blue, green, yellow, and red indicate increasing intracellular calcium concentration, in this order (see the scale bar on the right). Below, change in the calcium concentration is shown throughout time in each cell depicted in the left figure. The origin was set to be the time that the mechanical stimulus was applied. (B) Numerical results with the same settings as that of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0092650#pone-0092650-g003" target="_blank">Fig. 3</a>, except that the stimulus is five times stronger, .</p
    corecore