76 research outputs found
A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn
Background:
Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents.
Results:
We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin.
Conclusions:
These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia
Septation of Infectious Hyphae Is Critical for Appressoria Formation and Virulence in the Smut Fungus Ustilago Maydis
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently
RiskStructures : A Design Algebra for Risk-Aware Machines
Machines, such as mobile robots and delivery drones, incorporate controllers responsible for a task while handling risk (e.g. anticipating and mitigating hazards; and preventing and alleviating accidents). We refer to machines with this capability as risk-aware machines. Risk awareness includes robustness and resilience, and complicates monitoring (i.e., introspection, sensing, prediction), decision making, and control. From an engineering perspective, risk awareness adds a range of dependability requirements to system assurance. Such assurance mandates a correct-by-construction approach to controller design, based on mathematical theory. We introduce RiskStructures, an algebraic framework for risk modelling intended to support the design of safety controllers for risk-aware machines. Using the concept of a risk factor as a modelling primitive, this framework provides facilities to construct, examine, and assure these controllers. We prove desirable algebraic properties of these facilities, and demonstrate their applicability by using them to specify key aspects of safety controllers for risk-aware automated driving and collaborative robots
The mammals of Angola
Scientific investigations on the mammals of Angola started over 150 years
ago, but information remains scarce and scattered, with only one recent published
account. Here we provide a synthesis of the mammals of Angola based on a thorough
survey of primary and grey literature, as well as recent unpublished records. We present
a short history of mammal research, and provide brief information on each species
known to occur in the country. Particular attention is given to endemic and near endemic
species. We also provide a zoogeographic outline and information on the conservation
of Angolan mammals. We found confirmed records for 291 native species, most of
which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and
Cetartiodactyla (33). There is a large number of endemic and near endemic species,
most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to
be associated with unique physiographic settings such as the Angolan Escarpment. The
mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11
Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data
deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio
Recommended from our members
Low-Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the Strength of the Lithosphere
Plastic deformation of olivine at relatively low temperatures (i.e., low-temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low-temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation-DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low-temperature plasticity is the dominant deformation mechanism, fine-grained samples are stronger at yield than coarse-grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long-range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.Support for this research was provided by Natural Environment Research Council (NERC) grant NE/M000966/1 and NSF Division of Earth Sciences
grants 1255620, 1464714, and 1550112. D.E.J.A. acknowledges funding from the Royal Academy of Engineering through a research fellowship
Recommended from our members
A Subgrain-Size Piezometer Calibrated for EBSD
We calibrate a subgrain-size piezometer using electron backscatter diffraction (EBSD) data collected from experimentally deformed samples of olivine and quartz. Systematic analyses of angular and spatial resolution test the suitability of each dataset for inclusion in calibration of the subgrain-size piezometer. To identify subgrain boundaries, we consider a range of critical misorientation angles and conclude that a 1° threshold provides the optimal piezometric calibration. The mean line-intercept length, equivalent to the subgrain-size, is found to be inversely proportional to the von Mises equivalent stress for datasets both with and without the correction of Holyoke and Kronenberg (2010). These new piezometers provide stress estimates from EBSD analyses of polymineralic rocks without the need to discriminate between relict and recrystallised grains and therefore greatly increase the range of rocks that may be used to constrain geodynamic models.This research was supported by the NERC Environmental Research DTP grant NE/L002612/1, University of Oxford, RMG, and National Science Foundation (NSF) Awards EAR-1755805 to DLK, EAR-1806791 to KMK and EAR-1848380 to CWH. Qz-2 experiments were performed by CWH with support from NSF grants EAR-0208150 to Jan Tullis and EAR-1321882 to CWH and Andreas K. Kronenberg. In addition, DW acknowledges support from the Netherlands Organisation for Scientific Research, User Support Programme Space Research, grant ALWGO.2018.038
Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine
The strength of olivine at low temperatures and high stresses in Earth’s lithospheric mantle
exerts a critical control on many geodynamic processes, including lithospheric flexure and the
formation of plate boundaries. Unfortunately, laboratory-derived values of the strength of olivine
at lithospheric conditions are highly variable and greatly disagree with those inferred from
geophysical observations. Here we demonstrate via nanoindentation that the strength of olivine
depends on the length-scale of deformation, with experiments on smaller volumes of material
exhibiting larger yield stresses. This “size effect” resolves discrepancies among previous
measurements of olivine strength using other techniques. It also corroborates the most recent flow
law for olivine, which proposes a much weaker lithospheric mantle than previously estimated, thus
bringing experimental measurements into closer alignment with geophysical constraints. Further
implications include an increased difficulty of activating plasticity in cold, fine-grained shear
zones, and an impact on the evolution of fault surface roughness due to the size-dependent
deformation of nanometer- to micrometer-sized asperities
- …