4,353 research outputs found

    Metal Rich Plasma at the Center Portion of the Cygnus Loop

    Get PDF
    We observed the center portion of the Cygnus Loop supernova remnant with the ASCA observatory. The X-ray spectrum of the center portion was significantly different from that obtained at the North-East (NE) limb. The emission lines from Si and S were quite strong while those of O and the continuum emission were similar to those obtained at the NE limb. Based on the spectral analysis, Si and S emission lines originated from a high-kTe and low ionization plasma whereas O and most of the continuum emission arose from a low-kTe and high ionization plasma. We suppose that Si and S emitting gas are present at the interior of the Loop while O lines and continuum emission mainly arise from the shell region. Therefore, we subtracted the spectrum of the NE limb from that of the center. Obtained abundances of Si, S, and Fe were 4 ±\pm 1, 6 ±\pm 2, and 1.30.3+0.6{1.3}^{+0.6}_{-0.3} times higher than those of the cosmic abundances, respectively, and are \sim40 times richer than those obtained at the NE limb. These facts strongly support that some of the crude ejecta must be left at the center portion of the Cygnus Loop. The low abundance of Fe relative to Si and S suggests a type II SN with a massive progenitor star as the origin of the Cygnus Loop.Comment: Accepted for Publications of the Astronomical Society of Japan, 40 pages, 12 Postscript figures, uses PASJ95.sty, PASJadd.sty, and psbox.st

    Brownian motion on the Sierpinski carpet

    Full text link
    We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpinski carpet that is invariant with respect to the local symmetries of the carpet. Consequently for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined

    Evolution of Paramagnetic Quasiparticle Excitations Emerged in the High-Field Superconducting Phase of CeCoIn5

    Get PDF
    We present In NMR measurements in a novel thermodynamic phase of CeCoIn5 in high magnetic field, where exotic superconductivity coexists with the incommensurate spin-density wave order. We show that the NMR spectra in this phase provide direct evidence for the emergence of the spatially distributed normal quasiparticle regions. The quantitative analysis for the field evolution of the paramagnetic magnetization and newly-emerged low-energy quasiparticle density of states is consistent with the nodal plane formation, which is characterized by an order parameter in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The NMR spectra also suggest that the spatially uniform spin-density wave is induced in the FFLO phase.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries,

    Get PDF
    We examine a class of fractal graphs which arise from a subclass of finitely ramified fractals. The two-sided heat kernel estimates for these graphs are obtained in terms of an effective resistance metric and they are best possible up to constants. If the graph has symmetry, these estimates can be expressed as the usual Gaussian or sub-Gaussian estimates. However, without symmetry, the off-diagonal terms show different decay in different directions. We also discuss the stability of the sub-Gaussian heat kernel estimates under rough isometries
    corecore