2 research outputs found

    Localised transmission hotspots of a typhoid fever outbreak in the Democratic Republic of Congo

    Get PDF
    Introduction: in a semi-urban setting in the Democratic Republic of Congo, this study aims to understand the dynamic of a typhoid fever (TF) outbreak and to assess: a) the existence of hot spots for TF transmission and b) the difference between typhoid cases identified within those hot spots and the general population in relation to socio-demographic characteristics, sanitation practice, and sources of drinking water.  Methods: this was a retrospective analysis of TF outbreaks in 2011 in Kikwit, DRC using microbiological analysis of water sources and a structured interview questionnaire.  Results: there were a total of 1430 reported TF cases. The outbreak’s epidemic curve shows earliest and highest peak attack rates (AR) in three military camps located in Kikwit (Ebeya 3.2%; Ngubu 3.0%; and Nsinga 2.2%) compared to an average peak AR of 0.6% in other affected areas. A total 320 cases from the military camps and the high burden health areas were interviewed. Typhoid cases in the military camps shared a latrine with more than one family (P<0.02). All tap water sources in both the military camps and general population were found to be highly contaminated with faecal coliforms.  Conclusion: the role of military camps in Kikwit as early hotspots of TF transmission was likely associated with lower sanitary and hygiene conditions. The proximity of camps to the general population might have been responsible for disseminating TF to the general population. Mapping of cases during an outbreak could be crucial to identify hot spots for transmission and institute corrective measures

    Metal–organic complexation in the marine environment

    Get PDF
    We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample
    corecore