40 research outputs found
Second order resonant Raman scattering in single layer tungsten disulfide (WS)
Resonant Raman spectra of single layer WS flakes are presented. A
second order Raman peak (2LA) appears under resonant excitation with a
separation from the E mode of only cm. Depending on the
intensity ratio and the respective line widths of these two peaks, any analysis
which neglects the presence of the 2LA mode can lead to an inaccurate
estimation of the position of the E mode, leading to a potentially
incorrect assignment for the number of layers. Our results show that the
intensity of the 2LA mode strongly depends on the angle between the linear
polarization of the excitation and detection, a parameter which is neglected in
many Raman studies.Comment: 6 pages, 4 figure
Charge Generation and Selective Separation at PbS Quantum Dot Metal Oxide Interfaces
Charge separation and transfer at the interface between layers of oleic acid capped PbS quantum dots QDs and Titanium and Indium Tin oxide TiO2 and ITO films were investigated by surface photovoltage SPV measurements. Photoluminescence PL measurements were performed in order to check for excitonic transitions and determine the QD band gaps. The QDs diameter of 4.2 nm and 5.0 nm were estimated by using the PL band gaps and the theoretical equation derived by Wang et al. [J. Chem. Phys. 87 1987 7315]. The SPV spectra of the PbS QDs TiO2 system reveal a positive charge on the PbS film surface and show three distinguished regions which demonstrate i the charge separation across QDs, ii the electron injection from QDs into TiO2 and iii the fundamental absorption in TiO2. The on set of the electron injection depends on the QD size QD band gap it shifts to lower photon energies for lower QD dimensions for higher QD band gaps . Thus, a better conduction band alignment is achieved in the latter case. In contrast to PbS QDs TiO2, the SPV spectra of the PbS QDs ITO structure reveal the negative charge on PbS surface. Moreover, the charge transfer at this interface is not observed. Instead, the SPV peculiarities in the photon energy range 1.4 3.0 eV point out to trapped holes on the ITO surface state
Temperature Dependence of the Exciton Gap in Monocrystalline CuGaS2
Single crystals of CuGaS2 have been grown by chemical vapour transport. Their near-band gap photoluminescence properties were investigated in the temperature range of 10-300 K. The variation of the exciton gap energy with temperature was studied by means of a three-parameter thermodynamic model, the Einstein model and the Pässler model. Values of the band gap at T=0 K, of a dimensionless constant related to the electron-phonon coupling, and of an effective and a cut-off phonon energy have been estimated. It has also been found that the major contribution of phonons to the shift of Eg as a function of T in CuGaS2 is mainly from optical phonons
Structural investigation of CuIn5Se8 single crystals by optical second harmonic generation, ellipsometry, and photoluminescence
Contains fulltext :
35366.pdf (publisher's version ) (Open Access