20 research outputs found

    Reconnoitering Milk Constituents of Different Species, Probing and Soliciting Factors to Its Soundness

    Get PDF
    Milk composition and production varies from species to species, reflecting its diversified benefits on health. Lipids from caprine and ovine milk are anti-obesity and anti-atherogenic while prebiotic in the case of caprine. Higher contents of selenium from caprine and iron from camel milk play a role in immune system and oxygen transport system, respectively, whereas enriched vitamins like riboflavin, folic acid, B6, vitamin A of bovine, and foliate of cattle are effective in the synthesis of hemoglobin, and high niacin content of caprine is anti-cancerous. Camel milk is found to have characteristics of anti-carcinogenic, antidiabetic, and autoimmune therapeutic. Various processing techniques like pasteurization, skim milk powder processing, and ultra-high temperature processing are necessary for safe provision of milk to meet consumers’ demand. Change in flavor, loss of micronutrients, biofilm production, and spore-forming bacteria are prominent challenges during processing. Antimicrobial resistance and disease conditions are exaggerating factors of milk deterioration with respect to quality and quantity. Preclinical trials like somatic cell count, California mastitis test, proteomic analysis, Raman spectroscopy-based analysis, and X-ray fluorescence analysis are helpful in avoiding the spread of disease and controlling of economic losses. This chapter focuses differential functions of bioactive of milk, issues arising during processing techniques, and preclinical studies of milk for safer production and consumption of milk

    Viral outbreaks: A real threat to the world

    Get PDF
    Global public health is facing significant challenges in terms of emerging and re-emerging pathogens. The world is facing a new public health crisis emergence and spread of Coronaviruses outbreaks especially COVID-19 after nine deadliest viral outbreaks including Marburg virus, Ebola virus, Rabies, HIV, Smallpox, Hantavirus, Influenza, Dengue and Rotavirus. Coronaviruses (enveloped non-segmented positive-sense RNA viruses) belong to the Coronaviridae family, broadly distributed in humans as well as in other mammals. In December 2019, the COVID-19 outbreak was reported in the Wuhan, Hubei province of China. WHO confirmed that COVID-19 is associated with Huanan seafood (Wuhan). COVID-19 virus outbreak is more dangerous than its ancestors MERS-CoV and SARS-CoV. Although the case fatality rate is lower, it has alarmed the world because of its rapid spread during this era of the modern world where the whole world is connected through different channels of trade. As the world is already facing economic challenges, underdeveloped countries are not capable of facing such challenges, and this outbreak may become worse than ever before.Keywords: Coronaviruses; COVID-19; Marburg virus; Ebola virus; Rabies; HIV; Smallpox; Hantavirus; Influenza; Dengue; Rotaviru

    Leptospirosis: Rising Nuisance for Cattle and Threat to Public Health

    Get PDF
    Leptospirosis is a communicable disease at farms that results in abortion and pathological changes in animals and human respectively. Disease is majorly spreading through indirect contact with contaminated urine material. The causative agent belongs to Leptospira genus having 21 species, 25 serogroups, and 250 serovars. The prevalence noted at world level is counted to be 41.39% with 30.11% in Asia, 25.62% in Africa, and 46.42% in South Africa. The virulence is attributed to Loa22 protein which is the first protein identified as essential virulence factor. Pathogenesis involves vasculitis following which are direct cytotoxicity and immunological injury resulting in renal failure. Direct examination, PCR, isothermal methods, microscopic agglutination test (MAT) and IgM enzyme-linked immunosorbent assay (ELISA) are diagnostic approaches for leptospirosis. The MAT is a gold standard test for leptospirosis identification. Doxycycline and azithromycin were used as drugs against leptospirosis in mild and severe cases of leptospirosis. Further studies are needed regarding identification, treatment, and effective vaccination

    Etiology of Bovine Mastitis

    Get PDF
    Mastitis in dairy animals is the primary concern of dairy farmers, which is the most common disease that causes huge economic losses in the dairy industry. The economic losses due to mastitis are from a reduction in milk yield, condemnation of milk with antibiotic residues, veterinary treatment costs, and death. In addition, some mastitis pathogens also cause serious human diseases associated with the contamination of milk or milk products with bacteria or their toxins. Bovine mastitis is mainly caused by a wide range of environmental and contagious bacterial mastitis pathogens. Contagious pathogens are those whose main reservoir is the infected udder. Contagious pathogens mainly spread among animals during milking process whereas environmental pathogens spread from environment to udder at any time. The source of the environmental pathogens is the surrounding environment of an animal. The major contagious pathogens include Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma spp. and the minor contagious pathogens include Corynebacterium bovis and others. Major environmental pathogens include coliform bacteria (Escherichia coli, Klebsiella spp., Enterobacter spp. and Citrobacter spp.), environmental streptococci (Strep. dysgalactiae, Strep. uberis). This chapter covers detailed review of published data on contagious and environmental pathogens responsible for bovine mastitis

    Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions

    No full text
    Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4–7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8–18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia

    Double tail anomaly and surgical intervention

    No full text
    Congenital problems can be caused by genetic or chromosomal abnormalities. Some of these problems can be treated through different methods. These methods of treatment depend on the level defection. A twenty-fi ve days old female cross bred buffalo calf was presented at out-door of Department of Clinical Medicine and Surgery, Faculty of Veterinary Sciences, University of Agriculture Faisalabad with a complaint of an extra tail and maggots’ infestation. On complete physical examination abnormal growth was suspected as congenital problem with the presence of second tail. Surgical intervention was proposed as line of action against this anomaly.</p

    Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks

    No full text
    Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that matched the natural aging process from juvenile to natural aging. This study included a significant shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes, Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The significant shifts in microflora composition and structure might reflect adaptation of gut microbiome, which is associated with physicochemical conditions changes and substrate availability in the gut across all development periods of yaks

    Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies

    No full text
    Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19

    Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants

    No full text
    Ruminant nutrition has significantly revolutionized a new and prodigious molecular approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA technologies and analysis have produced a wealth of data that have shifted the research threshold scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in different cellular genomic alterations among different ruminant species, besides the interactions with other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within the gut health and productivity context, which has made interpreting homogenous evidence more complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts with nutrition and other variables linked to animal performance. Such findings should contribute to crystallizing powerful interpretations correlating feeding management with ruminant production and health through genomics. This review will present a road-mapping discussion of promising trends in ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes
    corecore