29 research outputs found

    Pennsylvania Folklife Vol. 11, No. 1

    Get PDF
    • A Dunker Weekend Love Feast of 100 Years Ago • The Peacock in Pennsylvania • The Get-Togethers of the Young Amish Folk • Church and Meetinghouse Stables and Sheds • Abraham Harley Cassel - Dunkard Bibliophile • Mennonite Folklore • Springs and Springhouses • Finishing Wooden Surfaces • Early Funeral Notices • Collecting Dialect Folk Songshttps://digitalcommons.ursinus.edu/pafolklifemag/1006/thumbnail.jp

    Plasma Dynamics

    Get PDF
    Contains reports on ten research projects split into two sections.National Science Foundation (Grant ENG77-00340)U.S. Department of Energy (Contract EY-76-S-02-2766)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Department of Energy (Contract ET-78-C-01-3019)U.S. Department of Energy (Contract ET-78-S-02-4681)U.S. Department of Energy (Contract ET-78-S-02-4682)U.S. Department of Energy (Grant EG-77-G-01-4107)U.S. Department of Energy (Contract ET-78-S-02-4714)U.S. Department of Energy (Contract ET-78-S-02-4886)U.S. Department of Energy (Contract ET-78-S-02-4690

    Plasma Dynamics

    Get PDF
    Contains reports on ten research projects divided into two sections.National Science Foundation (Grant ENG79-07047)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Department of Energy (Contract DE-ACO2-78ET51013)U.S. Department of Energy (Contract DE-ASO2-78ET53073.AO02)U.S. Department of Energy (Contract ET-78-S-02-4682)U.S. Department of Energy (Contract DE-AS02-78ET53074)U.S. Department of Energy (Contract DE-ASO2-78ET53050)U.S. Department of Energy (Contract DE-AS02-78ET51002)U.S. Department of Energy (Contract DE-ASO2-78ET53076

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on eighteen research projects split into seven sections and reports on four research projects.U.S. Atomic Energy Commission (Contract AT(l1-1)-3070)National Science Foundation (Grant GK-37979X1

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on twenty-one projects split into three sections, with four sub-sections in the second section and reports on twelve research projects.National Science Foundation (Grant ENG75-06242)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Energy Research and Development Agency (Contract E(11-1)-3070)U.S. Energy Research and Development Administration (Contract E(11-1)-3070)Research Laboratory of Electronics, M.I.T. Industrial Fellowshi

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on nineteen research projects split into five sections.National Science Foundation (Grant ENG75-06242-A01)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U.S. Energy Research and Development Administration (Contract EY-76-C2-02-3070.*000

    Plasma Dynamics

    Get PDF
    Contains reports on seventeen research projects split into two sections.National Science Foundation (Grant ENG77-00340)U. S. Energy Research and Development Administration (Contract E(11-1)-2766)U. S. Energy Research and Development Administration (Contract EY-76-S-02-2766)U. S. Air Force - Office of Scientific Research (Grant AFOSR-77-3143)U. S. Department of Energy (Grant EG-77-G-01-4107

    Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

    Get PDF
    Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with significant precision

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Hot spot on HIV protease.

    No full text
    <p>High affinity diverse fragment clustering completely maps out the indinavir binding site on HIV protease.</p
    corecore