23 research outputs found
Novel Materials From the Supramolecular Self-Assembly of Short Helical β3-Peptide Foldamers
Self-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials—such as hydrogels—that are tailored for applications in tissue engineering, cell culture and drug delivery. This review provides an overview of self-assembled peptide nanostructures obtained via the supramolecular self-assembly of short β-peptide foldamers with a specific focus on N-acetyl-β3-peptides and their applications as bio- and nanomaterials
Recommended from our members
Transition of nano-architectures through self-assembly of lipidated β3-tripeptide foldamers
β3-peptides consisting exclusively of β3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the β3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl β3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population
Precursor Manipulation in Glycopeptide Antibiotic Biosynthesis: Are β‑Amino Acids Compatible with the Oxidative Cyclization Cascade?
Natural
products such as the glycopeptide antibiotics (GPAs, including
vancomycin and teicoplanin) are of great pharmaceutical importance
due to their use against Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus. GPAs are assembled in a complex
process based on nonribosomal peptide synthesis and late-stage, multistep
cross-linking of the linear heptapeptide performed by cytochrome P450
monooxygenases. These P450 enzymes demonstrate varying degrees of
substrate selectivity toward the linear peptide precursor, with limited
information available about their tolerance regarding modifications
to amino acid residues within the essential antibiotic core of the
GPA. In order to test the acceptance of altered residues by the P450-catalyzed
cyclization cascade, we have explored the use of β-amino acids
in both variable and highly conserved positions within GPA peptides.
Our results indicate that the incorporation of β-amino acids
at the C-terminus of the peptide leads to a dramatic reduction in
the efficiency of peptide cyclization by the P450s during GPA biosynthesis,
whereas replacement of residue 3 is well tolerated by the same enzymes.
These results show that maintaining the C-terminal 3,5-dihydroxyphenylglycine
residue is of key importance to maintain the efficiency of this complex
and essential enzymatic cross-linking process
Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide
Delivery across the cell membrane is of critical importance for the development of therapeutics targeting intracellular proteins. The use of cell-penetrating peptides (CPPs), such as Penetratin (P16), has facilitated the delivery of otherwise cell-impermeable molecules allowing them to carry out their biological function. A truncated form of Penetratin (RRMKWKK) has been previously described as the minimal Penetratin sequence that is required for translocation across the cell membrane. Here, we performed a detailed comparison of cellular uptake by Penetratin (P16) and the truncated Penetratin peptide (P7), including their ability to deliver G7-18NATE, a cyclic peptide targeting the cytosolic cancer target Grb7-adapter protein into cells. We identified that both P16 and P7 were internalized by cells to comparable levels; however, only P16 was effective in delivering G7-18NATE to produce a biological response. Live-cell imaging of fluorescein isothiocyanate-labeled peptides suggested that while P7 may be taken up into cells, it does not gain access to the cytosolic compartment. Thus, this study has identified that the P7 peptide is a poor CPP for the delivery of G7-18NATE and may also be insufficient for the intracellular delivery of other bioactive molecules
Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide
Interior, general vie
Evaluation of cyclic peptide inhibitors of the Grb7 breast cancer target: small change in cargo results in large change in cellular activity
Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date
The protective effects of a novel AT2 receptor agonist, β-Pro7Ang III in ischemia-reperfusion kidney injury
Background and purpose: This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, β-Pro7Ang III in a mouse model of acute kidney injury (AKI). Methods: C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of β-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. Key results: Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving β-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following β-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to β-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that β-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)− 6 production but increased IL-10 secretion, compared to LPS alone. Conclusion: Administration of β-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI
Migration and Differentiation of Neural Stem Cells Diverted From the Subventricular Zone by an Injectable Self-Assembling β-Peptide Hydrogel
Neural stem cells, which are confined in localised niches are unable to repair large brain lesions because of an inability to migrate long distances and engraft. To overcome these problems, previous research has demonstrated the use of biomaterial implants to redirect increased numbers of endogenous neural stem cell populations. However, the fate of the diverted neural stem cells and their progeny remains unknown. Here we show that neural stem cells originating from the subventricular zone can migrate to the cortex with the aid of a long-lasting injectable hydrogel within a mouse brain. Specifically, large numbers of neuroblasts were diverted to the cortex through a self-assembling β-peptide hydrogel that acted as a tract from the subventricular zone to the cortex of transgenic mice (NestinCreERT2:R26eYFP) in which neuroblasts and their progeny are permanently fluorescently labelled. Moreover, neuroblasts differentiated into neurons and astrocytes 35 days post implantation, and the neuroblast-derived neurons were Syn1 positive suggesting integration into existing neural circuitry. In addition, astrocytes co-localised with neuroblasts along the hydrogel tract, suggesting that they assisted migration and simulated pathways similar to the native rostral migratory stream. Lower levels of astrocytes were found at the boundary of hydrogels with encapsulated brain-derived neurotrophic factor, comparing with hydrogel implants alone