34 research outputs found

    Measurement of RudsR_{\text{uds}} and RR between 3.12 and 3.72 GeV at the KEDR detector

    Get PDF
    Using the KEDR detector at the VEPP-4M e+eβˆ’e^+e^- collider, we have measured the values of RudsR_{\text{uds}} and RR at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3%3.3\% at most of energy points with a systematic uncertainty of about 2.1%2.1\%. At the moment it is the most accurate measurement of R(s)R(s) in this energy range

    New precise determination of the \tau lepton mass at KEDR detector

    Full text link
    The status of the experiment on the precise Ο„\tau lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the Ο„+Ο„βˆ’\tau^+\tau^- cross section behaviour around the production threshold. The preliminary result based on 6.7 pbβˆ’1^{-1} of data is mΟ„=1776.80βˆ’0.23+0.25Β±0.15m_{\tau}=1776.80^{+0.25}_{-0.23} \pm 0.15 MeV. Using 0.8 pbβˆ’1^{-1} of data collected at the Οˆβ€²\psi' peak the preliminary result is also obtained: Ξ“eeBττ(Οˆβ€²)=7.2Β±2.1\Gamma_{ee}B_{\tau\tau}(\psi') = 7.2 \pm 2.1 eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton Physics, Tau0

    Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)

    Get PDF
    The products of the electron width of the J/\psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV, \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV. Their combinations \Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100) keV, \Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve theaccuracy of the leptonic and full widths and test leptonic universality. Assuming e\mu universality and using the world average value of the lepton branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments

    The metabolites of autotrophic and heterotrophic leaves of amaranthus tricolor L. early splendor variety [ΠœΠ•Π’ΠΠ‘ΠžΠ›Π˜Π’Π« ΠΠ’Π’ΠžΠ’Π ΠžΠ€ΠΠ«Π₯ И Π“Π•Π’Π•Π ΠžΠ’Π ΠžΠ€ΠΠ«Π₯ Π›Π˜Π‘Π’Π¬Π•Π’ АМАРАНВА Amaranthus tricolor L. БОРВА EARLY SPLENDOR]

    No full text
    An important area of systemic biology (metabolomics) is the study of the composition and properties of low-molecular metabolites of agricultural plants with different modes of nutrition. The use of metabolic technologies expands the possibilities of analyzing biochemical changes in the composition and structural modifications of metabolites occurring during the transition from autotrophic to heterotrophic nutrition. Most photosynthetic plants are capable of autotrophic nutrition, but in their lifetime, there are periods of appearance of the achlorophyllic organs which receive nutritients from the organic substances stored earlier. Thus, among Amaranthus tricolor L. plants there are varieties with leaves which differ from each other in the way of nutrition. For example, Early Splendor variety plants form brightly colored red heterotrophic leaves along with green photosynthesis leaf blades at the end of the vegetative phase. The comparative study of the low-molecular metabolites composition in these leaves is important for understanding the relationship between heterotrophic and autotrophic nutrition in the whole plant. In this paper, significant qualitative differences in metabolites composition between autotrophic and heterotrophic leaves were stated for the first time during the metabolome analysis of water and alcohol extracts of heterotrophic and autotrophic amaranth leaves of Early Splendor variety using the method of gas chromato-mass spectrometry. It was found that the low-molecular metabolites of autotrophic and heterotrophic leaves contained both non-specific metabolites common for both type of nutrition and specific metabolites characteristic for each of the ways separately. On the one hand, it indicates the close interaction between two ways of nutrition and, on the other hand, the ability to synthesize and modify the metabolites which demonstrates partial autonomy of heterotrophic leaves. The purpose of the work is to study the composition of low-molecular metabolites and to identify new biologically active metabolites antioxidants in heterotrophic and autotrophic amaranth leaves of Early Splendor variety. Experiments were carried out in 2017-2019 with amaranth plants of the Early Splendor variety at the end of flowering-the beginning of seed formation phase. The plants were grown in a film greenhouse (the Federal Research Center for Vegetable Growing). The fresh red-colored heterotrophic leaves formed at the top of the main stem and the underlying photosynthetic leaves with a fully formed leaf blade were collected for analysis. The leaves were homogenized (T18 homogenizer, IKA, Germany) and extracted for 30 min at 24 Β°C with either 96 % ethanol or distilled water (leaves weighing batch: extragent 1:10). The metabolites were profiled by gas chromato-mass spectrometry method (GH-MC) with a chromograph GH-MC JMS-Q1050GC (JEOL Ltd., Japan). According to the mass spectra library of the NIST-5 National Institute of Standards and Technology (USA), a total of 87 metabolites were totally identified. Heterotrophic leaves contained 19 substances in water extracts and 38 metabolites in alcohol extracts, while photosynthetic leaves contained 21 substances in the water extract and 57 metabolites in alcohol extracts. Twenty-nine identical metabolites were found in water and alcohol extracts. In heterotrophic and autotrophic amaranth leaves of Early Splendor variety squalene (C30H50), a biologically active compound with antioxidant properties was identified for the first time. Also, in heterotrophic leaves monopelargonine (monononanoin) (C15H11O7) was identified. Monopelargonine is an intermediate product of flavonoid o-glycosylation, is referred to phenolic compounds and possesses high antioxidant activity. Metabolites have been identified that are present in both autotrophic and heterotrophic amaranth leaves, which suggests a close interaction of the two types of nutrition during the appearance, growth and development of heterotrophic leaves. At the same time, photosynthesizing leaves serve as donors of key metabolites for heterotrophic leaves, while the latter are not only acceptors, but also can synthesize and modify metabolites necessary for cell formation. Due to revealed rich composition of carbohydrates, essential amino acids, lipids and organic acids, the photosynthesizing leaf biomass is a source of antioxidants and biologically active substances. It should be stressed that not all metabolites were identified. Nevertheless, the set of metabolites that we identified in the photosynthetic leaves allows us to suggest these substances to be key and sufficient compounds for the construction and functioning of cells and tissues in heterotrophic leaves. Β© 2020 Russian Academy of Agricultural Sciences. All rights reserved

    Squeezed diapirs of the Chernyshev Swell (the Timan Pechora Basin): integrated study and petroleum habitat

    No full text
    A multidisciplinary study including 2D and 3D seismic surveying, magnetotelluric, gravimetric, and magnetometric measurements was conducted to unravel the geological structure of the Chernyshev Swell's and the adjacent areas of the Kosyu-Rogov Foredeep Basin. Integrated interpretation of these data and vintage information allowed the introduction of a new concept of this areas' structural development. It suggests that the structural evolution was largely influenced by the diapirism of the Upper Ordovician salt. The salt started to move towards the Chernyshev Swell from the Kosyu-Rogov Foredeep Basin with the development of diapiric walls as early as the Silurian. The salt walls underwent compression during the Uralian collisional folding from the second half of the Artinskian age. It resulted in the squeezing of the diapirs and salt's extrusion to the surface, followed by extensive thrusting. The salt-related deformations continued throughout the Mesozoic and Cenozoic activated by the intraplate stresses. The study area's structural evolution created favourable conditions for the development of a large oil and gas trap in the 3-way structural closure juxtaposed against the thrust zone. It includes regionally productive suprasalt Silu-rian-Permian deposits sealed updip by the allochthonous salt. Β© 2021, VNIGNI-2 OOO. All rights reserved

    Π˜Π”Π•ΠΠ’Π˜Π€Π˜ΠšΠΠ¦Π˜Π― ΠœΠ•Π’ΠΠ‘ΠžΠ›Π˜Π’ΠžΠ’ Π‘ ΠΠΠ’Π˜ΠžΠšΠ‘Π˜Π”ΠΠΠ’ΠΠ«ΠœΠ˜ Π‘Π’ΠžΠ™Π‘Π’Π’ΠΠœΠ˜ Π’ Π›Π˜Π‘Π’Π¬Π―Π₯ ΠžΠ’ΠžΠ©ΠΠžΠ“Πž АМАРАНВА (AMARANTHUS TRICOLOR L.)

    No full text
    Antioxidant metabolites of plant origin are able to regulate many physiological functions of the body and reduce the risk of developing chronic diseases caused by free radical oxidation. Vegetable plants are the most affordable source of essential antioxidant metabolites lack of which leads to a sharp decrease in resistance to environmental stresses. Amaranth (Amaranthus tricolor L.) is a promising food and medicinal plant. Variety Valentina (originated by V.K. Gins, P.F. Kononkov, M.S. Gins, All- Russian Research Institute of Breeding and Seed Production of Vegetable Crops) was successfully introduced and grown in several Russian regions. Our objective was to study the composition and content of low-molecular biologically active antioxidant metabolites that determine the nutritional and pharmacological value of amaranth leaves, and to assess the main antioxidant accumulation in plant organs under the conditions of the Moscow Region. For analysis, fresh and dried leaves (juvenile, those with a formed blade, and old ones), inflorescences, stems, veins, petioles and roots were used. Amaranthine, reduced ascorbic acid, and total antioxidant content was measured in water and ethanol extracts from fresh and dry leaves and plant organs. Also, simple phenols and oxybenzoic acids, flavonoids, condensed and polymeric polyphenols were assayed. Chlorogenic, gallic, ferulic acids and arbutin content was determined in aqueous extract by high performance liquid chromatography (HPLC). The metabolites were analyzed by gas chromatography-mass spectrometry (GC/MS). It was shown that actively photosynthesizing leaves with a fully formed blade predominantly accumulated ascorbic acid, while in the aging leaves its amount decreased. Veins, petioles and stems contained substantially less metabolites with antioxidant activity compared to leaves. In aqueous extracts, the main betacyanins were amaranthine and iso-Amarantine. Chromatography of aqueous extracts from amaranth leaves showed the presence of highly active antioxidants, e.g. arbutin-glucoside hydroquinone and oxycinnamic acids including ferulic, chlorogenic, oxybenzoic (gallic) acids. In the tests, gallic acid concentration was 1.51 ΞΌg/100 ml, chlorogenic acid concentration was 2.05 ΞΌg/100 ml, ferulic acid concentration was 0.01 ΞΌg/100 ml, and arbutin concentration was 472.51 ΞΌg/100 ml. Water-extracted squalene (C30H50), a powerful antioxidant usually isolated from amaranth seeds only, was first discovered in amaranth leaves. Ethanol extraction revealed a greater number of the colored components in the spectral range of the 350-700 nm, in addition, gallic, chlorogenic and ferulic acids were found. A total of 37 low-molecular metabolites were identified by gas chromatography-mass spectrometry. Our findings indicate that vegetable amaranth, as a promising reproducible source of antioxidants, can be used in functional foods and phytobiologicals.Антиоксиданты Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ способны Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ физиологичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΈ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒ риск развития хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… свободно-Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ окислСниСм. Π‘Π°ΠΌΡ‹ΠΌ доступным источником ΡΡΡΠ΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… антиоксидантных ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ², Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π΅Π·ΠΊΠΎΠΌΡƒ сниТСнию устойчивости ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΊ стрСсс-Ρ„Π°ΠΊ-Ρ‚ΠΎΡ€Π°ΠΌ, слуТат ΠΎΠ²ΠΎΡ‰Π½Ρ‹Π΅ растСния. Амарант ( Amaranthus tricolor L. ) - пСрспСктивноС ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΅ ΠΈ лСкарствСнноС растСниС. Π‘ΠΎΡ€Ρ‚ Π’Π°Π»Π΅Π½Ρ‚ΠΈΠ½Π°, созданный Π²ΠΎ ВсСроссийском НИИ сСлСкции ΠΈ сСмСноводства ΠΎΠ²ΠΎΡ‰Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ (Π°Π²Ρ‚ΠΎΡ€Ρ‹ Π’.К. Гинс, П.Π€. Кононков, М.Π‘. Гинс), ΠΈΠ½Ρ‚Ρ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½ ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ выращиваСтся Π² рядС Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² России. ЦСлью нашСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ стало ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ состава ΠΈ содСрТания низкомолСкулярных биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² c антиоксидантными свойствами, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ листовой биомассы Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΠ° накоплСния основных антиоксидантов Π² ΠΎΡ€Π³Π°Π½Π°Ρ… растСний, Π²Ρ‹Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… Π² условиях Московской области. Анализировали Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΈ спиртовыС экстракты свСТСсобранных ΠΈ Π²Ρ‹ΡΡƒΡˆΠ΅Π½Π½Ρ‹Ρ… Π»ΠΈΡΡ‚ΡŒΠ΅Π² (ΡŽΠ²Π΅Π½ΠΈΠ»ΡŒΠ½Ρ‹Ρ…, с ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ сформированной листовой пластинкой ΠΈ старых), соцвСтия, стСбли, ΠΆΠΈΠ»ΠΊΠΈ, Ρ‡Π΅Ρ€Π΅ΡˆΠΊΠΈ ΠΈ ΠΊΠΎΡ€Π½ΠΈ. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ количСство Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΈΠ½Π°, восстановлСнной аскорбиновой кислоты, суммарноС содСрТаниС антиоксидантов, количСство простых Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ оксибСнзойных кислот, Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠ², кондСнсированных ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΠΎΠ². Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Ρ…Π»ΠΎΡ€ΠΎΠ³Π΅Π½ΠΎΠ²ΠΎΠΉ, Π³Π°Π»Π»ΠΎΠ²ΠΎΠΉ, Ρ„Π΅Ρ€ΡƒΠ»ΠΎΠ²ΠΎΠΉ кислот ΠΈ Π°Ρ€Π±ΡƒΡ‚ΠΈΠ½Π° Π² Π²ΠΎΠ΄Π½ΠΎΠΌ экстрактС опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π’Π­Π–Π₯). Для Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² примСняли Π³Π°Π·ΠΎΠ²ΡƒΡŽ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ (Π“Π₯/МБ). Π’ΠΎΠ΄Π½Ρ‹Π΅ экстракты разновозрастных Π»ΠΈΡΡ‚ΡŒΠ΅Π² Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ основных ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ²-антиоксидантов: Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΈΠ½Π°, аскорбиновой кислоты, ΠΊΠ°Ρ€ΠΎΡ‚ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ². Π’ ΡŽΠ²Π΅Π½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΡΡ‚ΡŒΡΡ… Π°ΠΊΠΊΡƒΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π»ΠΎΡΡŒ максимальноС количСство Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΈΠ½Π°, содСрТаниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ сниТалось ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ старСния листовой пластинки. Аскорбиновая кислота прСимущСствСнно накапливалась Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ„ΠΎΡ‚ΠΎΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π»ΠΈΡΡ‚ΡŒΡΡ… с ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½Π½ΠΎΠΉ пластинкой, Π² ΡΡ‚Π°Ρ€Π΅ΡŽΡ‰ΠΈΡ… Π»ΠΈΡΡ‚ΡŒΡΡ… Π΅Π΅ количСство ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π»ΠΎΡΡŒ. Π’ ΡŽΠ²Π΅Π½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΡΡ‚ΡŒΡΡ… Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»Π°ΡΡŒ тСндСнция ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ содСрТания аскорбиновой кислоты. Π‘ΡƒΠΌΠΌΠ°Ρ€Π½ΠΎΠ΅ содСрТаниС антиоксидантов Π² ΠΌΠΎΠ»ΠΎΠ΄Ρ‹Ρ… Π»ΠΈΡΡ‚ΡŒΡΡ… с Π½Π΅ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½Π½ΠΎΠΉ пластикой оказалось мСньшС, Ρ‡Π΅ΠΌ Π² Π»ΠΈΡΡ‚ΡŒΡΡ… с ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½Π½ΠΎΠΉ пластинкой. Π–ΠΈΠ»ΠΊΠΈ, Ρ‡Π΅Ρ€Π΅ΡˆΠΊΠΈ, стСбли Π°ΠΊΠΊΡƒΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ сущСствСнно мСньшС ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² с антиоксидантной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»ΠΈΡΡ‚ΡŒΡΠΌΠΈ. Π’ Π²ΠΎΠ΄Π½ΠΎΠΌ экстрактС Π±Π΅Ρ‚Π°Ρ†ΠΈΠ°Π½ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ прСдставлСны Π² основном Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΈΠ½ΠΎΠΌ ΠΈ ΠΈΠ·ΠΎΠ°ΠΌΠ°Ρ€Π°Π½Ρ‚ΠΈΠ½ΠΎΠΌ. Π₯роматографичСский Π°Π½Π°Π»ΠΈΠ· Π²ΠΎΠ΄Π½Ρ‹Ρ… экстрактов Π»ΠΈΡΡ‚ΡŒΠ΅Π² ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ высокоактивных антиоксидантов: Π°Ρ€Π±ΡƒΡ‚ΠΈΠ½Π° (Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ΄ Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ½Π°), оксикоричных кислот - Ρ„Π΅Ρ€ΡƒΠ»ΠΎΠ²ΠΎΠΉ, Ρ…Π»ΠΎΡ€ΠΎΠ³Π΅Π½ΠΎΠ²ΠΎΠΉ, оксибСнзойной (Π³Π°Π»Π»ΠΎΠ²ΠΎΠΉ). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ компарирования Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π³Π°Π»Π»ΠΎΠ²ΠΎΠΉ, Ρ…Π»ΠΎΡ€ΠΎΠ³Π΅Π½ΠΎΠ²ΠΎΠΉ, Ρ„Π΅Ρ€ΡƒΠ»ΠΎΠ²ΠΎΠΉ кислот ΠΈ Π°Ρ€Π±ΡƒΡ‚ΠΈΠ½Π° (соотвСтствСнно 1,51; 2,05; 0,01 ΠΈ 472,51 ΠΌΠΊΠ³/100 ΠΌΠ»). Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΌΠΎΡ‰Π½ΠΎΠ³ΠΎ антиоксиданта - сквалСна (C30H50) Π² Π²ΠΎΠ΄Π½ΠΎΠΌ экстрактС Π»ΠΈΡΡ‚ΡŒΠ΅Π² Π°ΠΌΠ°Ρ€Π°Π½Ρ‚Π°, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρ€Π°Π½Π΅Π΅ Π΅Π³ΠΎ выдСляли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ· сСмян этого растСния. Π’ спиртовом экстрактС выявлСно большСС количСство ΠΎΠΊΡ€Π°ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² (ΠΎΠ±Π»Π°ΡΡ‚ΡŒ спСктра l = 350-700 Π½ΠΌ), ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ галловая, хлорогСновая ΠΈ фСруловая кислоты. ВсСго с использованиСм Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-спСктромСтрии ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 37 низкомолСкулярных ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ²ΠΎΡ‰Π½ΠΎΠΉ Π°ΠΌΠ°Ρ€Π°Π½Ρ‚ ΠΊΠ°ΠΊ пСрспСктивный воспроизводимый источник антиоксидантов ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ создании Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΈ Ρ„ΠΈΡ‚ΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² профилактичСского назначСния
    corecore