1,638 research outputs found

    Phase diagram of geometric d-wave superconductor Josephson junctions

    Full text link
    We show that a constriction-type Josephson junction realized by an epitactic thin film of a d-wave superconductor with an appropriate boundary geometry exhibits intrinsic phase differences between 0 and pi depending on geometric parameters and temperature. Based on microscopic Eilenberger theory, we provide a general derivation of the relation between the change of the free energy of the junction and the current-phase relation. From the change of the free energy, we calculate phase diagrams and discuss transitions driven by geometric parameters and temperature.Comment: 9 pages, 11 figures. Phys. Rev. B, accepte

    Josephson effect in ballistic graphene

    Get PDF
    We solve the Dirac-Bogoliubov-De-Gennes equation in an impurity-free superconductor-normal-superconductor (SNS) junction, to determine the maximal supercurrent that can flow through an undoped strip of graphene with heavily doped superconducting electrodes. The result is determined by the superconducting gap and by the aspect ratio of the junction (length L, small relative to the width W and to the superconducting coherence length). Moving away from the Dirac point of zero doping, we recover the usual ballistic result in which the Fermi wave length takes over from L. The product of critical current and normal-state resistance retains its universal value (up to a numerical prefactor) on approaching the Dirac point.Comment: 4 pages, 2 figure

    Impurity band in clean superconducting weak links

    Full text link
    Weak impurity scattering produces a narrow band with a finite density of states near the phase difference Ď•=Ď€\phi =\pi in the mid-gap energy spectrum of a macroscopic superconducting weak link. The equivalent distribution of transmission coefficients of various cunducting quantum channels is found.Comment: 4 pages, 4 figures, changed conten

    Spectrum of Andreev Bound States in a Molecule Embedded Inside a Microwave-Excited Superconducting Junction

    Get PDF
    Non-dissipative Josephson current through nanoscale superconducting constrictions is carried by spectroscopically sharp energy states, so-called Andreev bound states. Although theoretically predicted almost 40 years ago, no direct spectroscopic evidence of these Andreev bound states exists to date. We propose a novel type of spectroscopy based on embedding a superconducting constriction, formed by a single-level molecule junction, in a microwave QED cavity environment. In the electron-dressed cavity spectrum we find a polariton excitation at twice the Andreev bound state energy, and a superconducting-phase dependent ac Stark shift of the cavity frequency. Dispersive measurement of this frequency shift can be used for Andreev bound state spectroscopy.Comment: Published version; 4+ pages, 3 figure

    Non-collinear single-electron spin-valve transistors

    Full text link
    We study interaction effects on transport through a small metallic cluster connected to two ferromagnetic leads (a single-electron spin-valve transistor) in the "orthodox model" for the Coulomb blockade. The non-local exchange between the spin accumulation on the island and the ferromagnetic leads is shown to affect the transport properties such as the electric current and spin-transfer torque as a function of the magnetic configuration, gate voltage, and applied magnetic field.Comment: 4 pages, 3 figure

    Excitation gap of a graphene channel with superconducting boundaries

    Full text link
    We calculate the density of states of electron-hole excitations in a superconductor/normal-metal/superconductor (SNS) junction in graphene, in the long-junction regime that the superconducting gap is much larger than the Thouless energy. If the normal region is undoped, the excitation spectrum consists of neutral modes that propagate along the boundaries - transporting energy but no charge. These ``Andreev modes'' are a coherent superposition of electron states from the conduction band and hole states from the valence band, coupled by specular Andreev reflection at the superconductor. The lowest Andreev mode has an excitation gap, which depends on the superconducting phase difference across the SNS graphene channel. At high doping the excitation gap vanishes and the usual gapless density of states of Andreev levels is recovered. We use our results to calculate the superconducting phase dependence of the thermal conductance of the graphene channel.Comment: 8 pages, 10 figure

    Morphological Characteristic to Discriminate \u3cem\u3eFestulolium\u3c/em\u3e Hybrids (\u3cem\u3eFestuca Pratensis\u3c/em\u3e Ă— \u3cem\u3eLolium Perenne\u3c/em\u3e)

    Get PDF
    Environmental change and uncertainty is likely to pose new challenges in plant breeders. Recently attention has focused on the crossing of Lolium and Festuca species to obtain hybrids exhibiting many desirable traits of both parents. Key objectives of such programs are to combine the persistency, winter hardiness and drought tolerance of fescues with the high herbage yields and quality of ryegrasses (Zwierzykowski, Naganowska, 1994). One of the hybrids with great practical significance is a F. pratensis Ă— L. perenne hybrid [Festulolium loliaceum (Huds.) P.V. Fourn]. Many morphological traits of Festulolium hybrids demonstrate intermediate character, however, in relation to inflorescence type they are similar to L. perenne; the hybrids and perennial ryegrass have spike-like inflorescences, though they may be rarely a little-branched. Occurrence of a reduced inner glume in hybrid spikelets is a trait, which enables discrimination between Festulolium and L. perenne plants. The aim of this work was to analyse the morphological trait of inflorescences to aid the identification of the hybrids Festulolium in relation to L. perenne

    Rate equations for Coulomb blockade with ferromagnetic leads

    Full text link
    We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle. Interestingly, we find that the density-matrix description may be necessary even for metal particles with unpolarized leads if three or more single-electron levels contribute to the transport current and electron-electron interactions in the metal particle are described by the `universal interaction Hamiltonian'.Comment: 10 pages, 4 figures, REVTeX
    • …
    corecore