41 research outputs found
Radiation Generated by Charge Migration Following Ionization
Electronic many-body effects alone can be the driving force for an ultrafast
migration of a positive charge created upon ionization of molecular systems.
Here we show that this purely electronic phenomenon generates a characteristic
IR radiation. The situation when the initial ionic wave packet is produced by a
sudden removal of an electron is also studied. It is shown that in this case a
much stronger UV emission is generated. This emission appears as an ultrafast
response of the remaining electrons to the perturbation caused by the sudden
ionization and as such is a universal phenomenon to be expected in every
multielectron system.Comment: 5 pages, 4 figure
Ultrafast interatomic electronic decay in multiply excited clusters
An ultrafast mechanism belonging to the family of interatomic Coulombic decay
(ICD) phenomena is proposed. When two excited species are present, an ultrafast
energy transfer can take place bringing one of them to its ground state and
ionizing the other one. It is shown that if large homoatomic clusters are
exposed to an ultrashort and intense laser pulse whose photon energy is in
resonance with an excitation transition of the cluster constituents, the large
majority of ions will be produced by this ICD mechanism rather than by
two-photon ionization. A related collective-ICD process that is operative in
heteroatomic systems is also discussed.Comment: 4 pages, 3 figure
Quantum Interference Paves the Way for Long-Lived Electronic Coherences
The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon
Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule.
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d-16p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl
Recommended from our members
Correlated electronic decay following intense near-infrared ionization of clusters
We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles
Recommended from our members
Intracluster Coulombic decay following intense NIR ionization of clusters
We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay