626 research outputs found

    Nuclear effects and higher twists in F3 structure function

    Get PDF
    We analyze the CCFR collaboration iron target data on the xF3 structure function making particular emphasis on the extraction of the higher twist contributions from data. Corrections for nuclear effects are applied in order to extract data on the structure function of the isoscalar nucleon. Our analysis confirms the observation made earlier, that the higher twist terms depend strongly on the level to which QCD perturbation theory analysis is applied. We discuss the impact of nuclear effects on the higher twist term as well as on the QCD scale parameter Lambda_{\bar{MS}} extracted from the fit to data.Comment: 16 pages, 2 figure

    Production of squeezed states for macroscopic mechanical oscillator

    Get PDF
    The possibility of squeezed states generation for macroscopic mechanical oscillator is discussed. It is shown that one can obtain mechanical oscillator in squeezed state via coupling it to electromagnetic oscillator (Fabry-Perot resonator) and pumping this Fabry-Perot resonator with a field in squeezed state. The degradation of squeezing due to mechanical and optical losses is also analyzed

    Room temperature GW bar detector with opto-mechanical readout

    Full text link
    We present the full implementation of a room-temperature gravitational wave bar detector equipped with an opto-mechanical readout. The mechanical vibrations are read by a Fabry--Perot interferometer whose length changes are compared with a stable reference optical cavity by means of a resonant laser. The detector performance is completely characterized in terms of spectral sensitivity and statistical properties of the fluctuations in the system output signal. The new kind of readout technique allows for wide-band detection sensitivity and we can accurately test the model of the coupled oscillators for thermal noise. Our results are very promising in view of cryogenic operation and represent an important step towards significant improvements in the performance of massive gravitational wave detectors.Comment: 7 figures, submitted to Phys. Rev.

    Semiclassical approach to the nonlocal nonlinear Schr\"{o}dinger equation with a non-Hermitian term

    Full text link
    The nonlinear Sch\"{o}dinger equation (NLSE) with a non-Hermitian term is the model for various phenomena in nonlinear open quantum systems. We deal with the Cauchy problem for the nonlocal generalization of multidimensional NLSE with a non-Hermitian term. Using the ideas of the Maslov method, we propose the method of constructing asymptotic solutions to this equation within the framework of semiclassically concentrated states. The semiclassical nonlinear evolution operator and symmetry operators for the leading term of asymptotics are derived. Our approach is based on the solutions of the auxiliary dynamical system that effectively linearize the problem under certain algebraic conditions. The formalism proposed is illustrated with the specific example of the NLSE with a non-Hermitian term that is the model of an atom laser. The analytical asymptotic solution to the Cauchy problem is obtained explicitly for this example.Comment: 29 pages, 1 figur

    Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

    Get PDF
    A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses using the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.open
    • 

    corecore