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Abstract

The posaibility of squeezed states generation for macroscopic mechanical oscillator is discussed. It
is shown that one can obtain mechanical oscillator in squeezed state via coupling it to electromagnetic
oscillator (Fabry-Perot resonator) and pumping this Fabry-Perot resonator with a field in squeezed
state. The degradation of squeezing due to mechanical and optical loeses is also analysed.

Realization of quantum states such as squeezed, amplitude squeezed and others in real physical
systems is of great importance for confirmation of predictions of quantum mechanics and its future
development. There are a lot of papers concerning generation of squeezed states of electromagnetic
fields [1, 2, 3]. However realization of such states in other systems, for example, mechanical is also
of great importance. This problem arises in different high precision measurements, especially in
gravitational wave experiment [4].

Let’s consider a system of two coupled oscillators [5, 6]: electromagnetic (represented by Fabry-
Perot resonator with a laser pump beam amplitude E;, and frequency w, near one of the resonant
frequencies of resonator wp) and mechanical (represented by a moving mirror of Fabry-Perot
resonator connected to a spring). Pump beam enters the resonator through fixed mirror with
reflectance approaching 1 (this assumption is not critical for results and used only for simplicity,
we also suppose that | t; |— 0 but Eji- | t; |=const., where ¢; is amplitude transmittance
coefficient of fixed mirror). Usually one treats such a system in Hamiltonian formalism framework
[7] when equations of motion are conservative and the system is in free evolution. However in
our case it is more convenient to use Langevin approach with evolution of the system under the
action of input fields: E; (classical laser field) and Ej, (quantum field from field controller - device
allowing to generate electromagnetic field in appropriate state). In our analysis Ej, is squeezed
noise with two point of squeezing and it enters the resonator through moving mirror with nonzero
amplitude transmittance coefficient t,,. Then linearised equations of motion for such system have
the following form:

i+wls = —2v-[Ersin(At+ ¢) + Ezcos(At + ¢)]
Ey+ 6B +2B35cos(At +¢) = 26,y (1)

E3+6.E, — 28isin(At +¢) = 26.E,
where the following parameters are introduced
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E, and ¢ are the amplitude and the phase of the field inside optical resonator due to the action of
")aser force” Er with mirrors fixed, S is the beam cross section, ! is the length of optical resonator,
6, is optical damping of resonator due to the leakage of inside field through moving mirror (with
reflectivity lese thau 1), m and w, are mass and frequency of mechanical oscillator and £ is its
coordinate operator. For simplicity we assume that one can omit the damping of mechanical sys-
tem. We also assume that the fields could be represented in terms of their quadrature component
operators with usual commutation relations [8, 9]:

By, = Eycoswot + Eigsinwet (3)
E.. = E coswgt+ E;sinwet

Index "ba” fits a field entered the system from field controller and index "out” means that the
field outputs from Fabry-Perot resonator through moving mirror.
Introducing quadrature components for mechanical oscillator through equation

£ = Z.cos(At + ¢) + £, sin(At + ¢) (4)

(frequency A =3 w, is not exactly equal to the frequency w, of single mechanical ocecillator and
matches the presence of coupling between two oscillators) one can easily obtain the following
equations of motion (we suppose that the system is in steady state therefore di.,/dt = 0)

(3.cos(At + @) + 2, sin(At + $))(w2 — A?) = —2 - [Ey sin(At + ¢) + E; cos(At + ¢)]
E,+6.E, = 26Ey B [2.+ 2 .cos(2At + 2¢) + £, sin(2A¢ + 2¢)) (5)
Ba+6.E = 26.Eyn+8-[5, —%,con(2At + 2¢) + £.8in(2At + 2¢)]

It is obvious from (5) that fluctuations of Z. and #, depend on fluctuations of controller field
quadrature components only near frequencies w = 0 and w = 2 | A | that means that controller
field must consist of two modes with different frequencies wy and wo+2A. Then one can introduce
the following form for By

Epa = E. coswpt + E, sin wot + By cos((wo + 2A)t + x) + £s, sin((wo + 24A)t + x) (6)

where E"m E,, .E)C, E‘g, are quadrature component operators of two modes in narrow non overlapping

bandwidths (6w <| A |) near left and right sidebands which are detuned from the pump frequency
wp by A:wo=w,—Aand wo+2A =w, + A. Then introducing the coefficients

2
A - w: —- A? — 4ﬂ7A B — Sﬂ’yA
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one could obtain the following system of equations
Ai.+ B3, = —47B, — 476.(62 + 407 [ By con(x — ( — 26) + Eq,sin(x — (- 29)] (8)
Aia - Bic = '—47E¢: + 4’76¢(63 + 4A2)—1/2[E2¢ Sin(x - C - 2¢) - E?a COS(X - C - 2¢)]

where phase ( = arctan(2A/6,) represents the delay of the pump field inside the cavity with
respect to the laser field.



Let’s assume that controller field E}, is in squeezed state with < Ej, >= 0 and dispersions of
quadrature components (8, 9]

<AE?>= Nofge < AE? >= ygo {9)

where go > 1 is the squeezing coeflicient of back action field for mode with frequency wp, Ny is
vacuum level of dispersion and we use the fact that 2 | A |~ 2w, < wp. The same expressions are
valid for Eg,, 13},,; with obvious substitution gy — g, and correlations between E,, Ec and E—,,, E,.
are zero. Factors g, and g; depends on the structure of back action field controller.

The mechanical oscillator would be in squeegzed state only if the following special conditions
are valid. The first condition concerns the detuning A of the system: it must satisfy the equation

In this case contribution of "noisy componeat” E, to 2, vanishes. For the contribution of another
naisy component” . would be also unimportant one must choose the phase ¢ according to the
following equation:

X—(—20=kx/2 k=0,41,%42... (11)

that means that special phase correspondence must take place. In physical language this means
that one muat compensate the delay of electromagnetic field inside Fabry-Perot resonator with
regard to the pump field. This can be done by appropriate phase correspondence between the
pump beam and the field E}, from the squeezed state controller. Then the system equations of
motion occur (k = 1)

Bi, = —4vE, — 445.(62 + 40?2 L, (12)
Bi, = 4vE, — 4v6,(82 + 40?13 E,,

Therefore we obtain special quantum nondemolition coupling between optical and mechanical
oscillator: one quadrature component of mechanical oscillator couples only with one quadrature
component of optical field (on frequencies wy and wy + 2A) and the larger the squeezing of the
field of two electromagnetic modes (with frequency wp and wy + 2A) the greater the squeeze factor
of mechanical osciliator. It is worth mentioning that the squeezing g, of the mode with frequency
wo + 24 could be smaller than the squeering go of the mode with frequency wp of electromagnetic
field provided é, < A (because of the filtration of fluctuations by narrow bandwidth optical
resonator) otherwise the squeezing of two modes must be equal.

Let’s discuss tha time of operating regime achievement and the influznce of mechanical 6, and
optical coherent (due to difraction and mirror absorbtion) é, losses. In practice optical damping §,
due transmittance througk moving mirror is much greater than mechanical damping §,,. Then the
field inside resonator becomes squeesed through time §72. After that through time (28v/w,)~/?
(that is inverse value of coupling constant) the state of mechanical oscillator becomes also squeezed
and the initial state is forgotten. It is obvious that mechanical losses must not be very large:
b, < (287/w,)"?/g (g - required squeezing factor for mechanical oscillator) otherwise the rate
of coherent pumping through Josses would be larger than the rate of squeezing through action of
controiler fieid. Similarly ¢, must be smaller than 6,/ max(go, g2).
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In conclusion let’s discuss the structure of back action field controller. In accordance with the
ideas of papers [10, 11, 12] it must contain two circulators for uncoupling the fields Eou: and Epa,
the load (abeorber black body with sero teraperature) and two squeegers with pump frequencies
2o and 2(wo+2A) (for example, degenerate parametric amplifiers or four wave mixers). Then the
field E,y; comes through moving resonator mirror and two circulators to the load and dissipates in
it. Zero fluctuations of the load enters through first circulator the squeezer with pump frequency
2w, then geta through second circulator to the squeezer with pump frequency 2(wo + 2A) and
then enters the system through moving mirror.
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