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Abstract

The po_bflity of squeezed states _.neration for macroscopic mechanical oscillator is discussed. It

is shown that one can obtain mechanical oscillator in sqeeezed state via coepRag it to electromagnetic

oscillator (FLbry-Perot resonator) and pumping this Fabry-Pexot resonator with a £eld in squeezed

state. The degradation of squeezing due to mechanical and optical losses is also analysed.

Realization of quantum states such as squeezed, amplitude squeezed and others in real physical

systems is of great importance for confirma_on of predictions of quantum mechanics and its future

development. There are a lot of papers concerning generation of squeezed states of electromagnetic

fields [1, 2, 3]. However realization of such states in other systems, for example, mechanical is also

of great importance. This problem arises in different high precision measurements, especially in

gravitational wave experiment [4].

Let's consider a system of two coupled oscillators [5, 6]: electromagnetic (represented by Fabry-

Perot resonator with a laser pump beam amplitude EL and frequency wp near one of the resonant

frequencies of resonator w0) and mechanical (represented by a moving mirror of Fabry-Perot

resonator connected to a spring). Pump beam enters the resonator through fixed mirror with

reflectance approaching 1 (this assumption is not critical for results and used only for simplicity,

we also suppose that [ t/ I-'* 0 but Er.. ] t/ ]=const., where t/ is amplitude transm/ttance

coefficient of fixed mirror). Usually one treats such a system in Hami]tonian formalism framework

[7] when equations of motion are conservative and the system is in free evolution. However in

our case it is more convenient to use Langevin approach with evolution of the system under the

action of input fields: Er. (classical laser field) and E_. (quantum field from field controller - device

allowing to generate electromagnetic field in appropriate state). In our analysis E_, is squeezed

noise with two point of squeezing and it enters the resonator through moving mirror with nonzero

amplitude transmittance coefficient t,,. Then linearised equations of motion for such system have

the following form:

=

k, + + cos(,,,t+¢) =

E= + 6,,F_,=- 2fl=_ sin(At + ¢) -

where the following parameters are introduced

2t 4,rrnt 

--2_t • lEa sin(at -t- _b) -I- E.a coe(l_t -I- _b)]

(1)

A = wp--_o (2)
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Eo and _ are the amplitude and the phase of the field inside optical resonator due to the action of

"laser force" Er. with mirrors fixed, S is the beam cross section, I is the length of optical resonator,

5= is optical damping of resonator due to the leakage of inside field through moving mirror (with

reflectivity less thau 1), m and _p are mass and frequency of mechanical oscillator and _ is its

coordinate operator. For simplicity we assume that one can omit the damping of mechanical sys-

tem. We also assume that the fields could be represented in terms of their quadrature component

operators with usual commutation relations [8, 9]:

= &,cos_0=+ z_,_ot (3)

Index "ba" fits a field entered the system from field controller and index "out" means that the

field outputs from Fabry-Perot resonator through moving mfrror.

Introducing quadrature components for mechanical oscillator through equation

(4)

(frequency A _ w# is not exactly equal to the frequency w_ of single mechazd.cal oscillator and

matches the presence of coupling between two oscillators) one can easily obtain the following

eq.uations of motion (we suppose that the system is in steady state therefore d_c,j/_ - O)

(_ocos(z_+ _)+ _.m(_t + _))(_ - _) = -2_. [& _(_ + _)+ _ cos(_t+ _)]

Ez -F _.J_t ---- 2_=Ebl --/_" [}= + _¢cos(2A$ -I- _) -I- }. sin(2At -I- 2_)] (5)

_= -I- 6=_ = 26._ -t-/_" [_, -- =_.cos(2A_ + 2_) -I- _=sin(2At -I- 2_)]

It is obvious from (5) that fluctuations of =c and _, depend on fluctuations of controller field

quadratuxe components only near frequencies c# _, 0 and w _ 2 I A I that means that controller

field must consist of two modes with di_erent frequencies w0 and w0 + 2A. Then one can introduce

the following form for ]_s.:

.&. = & co.,.,ot+ & m _t + ._cos((,,,o+ 2z._,)_+ x) + &.,,in((,,.,o+ _z_),_+ ×) (e)

where .E_, _'_, ._: ,i_, are quadrature component operators of two modes innarrow non overlapping

bandwidths (&v {I A I)near leftand rightsidebands which are detuned from the pump frequency

wp by A :w0 = wp - A and _vo+ 2A = cv_+ A. Then introducing the coeflidents

one could obtain the followingsystem of equations

_° + B_. = -4_& - 4_a.(a._+ _A_)-'/_[_cos(x- ( - _) +_.sin(×- (- _-_)](s)
A_.- as= = -_& + _.(_._+ 4A_)-'/2[_,in(x- (- _)- _.cos(x- (- _)]

where phase ( = arctan(2A/_=) represents the delay of the pump field inside the cavity with

respect to the laser field.

84



Let's assumethat controller field E_ is in squeezed state with </_/_ >= 0 and dispersions of

quadrature components [8, 9]

(9)

where go > I is the squeezing coefficient of Back action field for mode with frequency w0, N0 is

vacu.xm level of dmperslon and we use the fact that 2 1 A I_ 2w_, ,_ w0. The same expressions axe

valid for _,, _ with obvious substitution go -'_ g2 and correlations between _,, _c mad ___,,

axe zero. Factors go and g2 depends on the structure of back action field controller.

The mechanical oscillator would be in squee_l state only H the following special conditions

axe valid. The first condition concerns the detuuing A of the system: it must satisfy the equation

A = 0 4sp 
-{- 4A _ = 0 (10)

In thiscase contribution of "noisy component"/_ to g, ,,-relishes.For the contribution of anothel

"noisy component" _ would be also_portant one must cho<me the phase _ according to the

following equation:

×-_-_= k_/2 k = 0,_1,±2... (11)

that means that special phase correspondence must take place. In physical language this means

that one must compensate the delay of electromagnetic field inside Fabry-Perot resonator with

regard to the p_rc.p field.This can be done by appropriate phase correspondence between the

pump beam and the fieldEb_ from the squeezed state controller.Then the system equations of

motion occur (]¢ -- 1)

= - + (12)
= - 4 6,(6.+

Therefore we obtain special quantum nondemolition coupling between optical and mechanical

oscill_or: one quadrature component of mechanical oscillator couples only with one quadrature

component of optical field (on frequencies w0 and w0 -I- 2A) and the larger the squeezing of the

field of two electromagnetic modes (with frequency w0 and w0 + 2A) the greater the squeeze factor

of mechanical oeciJiator. It is worth mentioning that the squeezing _ of the mode with frequency

w0 -!- 2A could be sma_er than the squeezing go of the mode with _requency _,_ o_ electromagnetic

field prodded 5_ < A (because o[ the filtration of fluctuations by narrow bandwidth optical

resonator) otherwise the squeezing of two reodes must be equal.

Let's"discussthe time o_ operatin_ regime achievement and the influenceof mechanical _# and

opticalcoherent (due to dif_ction and m;rror absorbtion)_ losses.In practiceopticaldamping _¢

due transmittance throug_ moving mirror ismuch greaterthan mechsalc_l dmmplng _,. Then the

fieldinsideresonator becomes squeezed through time 6_'_.After that through time (2_//_) -_/_

(thatisinversevalue ofcoupling constant) the stateof mechanical o_cillatorbecomes alsosqueezed

and th_ initi_lstate is forgotten. It is obvious that mechanical lossesmust not be very large:

_, < (2_7/w_,)_/_/g (g- required squeezing [actor for mechanical oeci]]ator) otherwise the rate

of coherent pumping through losses would be larger than the rate of squeezing through action of

controller field. S/milarly _ must be smaller tha_ _,/max(g0, g_).
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In conclusionlet's discussthe structure of ba_ action field controller, l, accordance with the

ideas of papers [10, 11, 12] it must contain two circulators for uncoupling the fields E_,t and Eb,,

the load (absorber black body with sero temperature) emd two squeezers with pump frequencies

2w0 and 2(too+ 2A) (for example, degenerate parametric amplifiers or four wave mixers). Then the

field E_ comes through moving resonator mirror emd two clrculatom to the load and dlasitmtes in

it. Zero fluctuations of the load ente_ through first circulator the squeezer with pump frequency

2we, then gets through second circulator to the squeezer with pump frequency 2(,Jo + 2A) and

then enters the system tlvrough moving mirror.
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