7 research outputs found

    Shocking HIV-1 with immunomodulatory latency reversing agents

    Get PDF
    The "shock-and-kill" strategy is one of the most explored HIV-1 cure approaches to eliminate latent virus. This strategy is based on HIV-1 reactivation using latency reversing agents (LRAs) to reactivate latent proviruses (the "shock" phase) and to induce subsequent elimination of the reactivated cells by immune responses or virus-induced cytopathic effects (the "kill" phase). Studies using immunomodulatory LRAs such as blockers of immune checkpoint molecules, toll-like receptor agonists, cytokines and CD8+ T cell depleting antibodies showed promising potential as LRAs inducing directly or indirectly cellular pathways known to control HIV transcription. However, the precise molecular mechanisms by which these immunomodulatory LRAs reverse latency remain incompletely understood. Together with the heterogenous nature of HIV-1 latency, this lack of understanding complicates efforts to develop more efficient and safer cure strategies. Hence, deciphering those mechanisms is pivotal in designing approaches to eliminate latent HIV infection.info:eu-repo/semantics/publishe

    L-arginine improves solubility and ANTI SARS-CoV-2 Mpro activity of rutin but not the antiviral activity in cells

    Get PDF
    The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization

    Replication of severe acute respiratory syndrome coronavirus 2 in human respiratory epithelium

    No full text
    Currently, there are four seasonal coronaviruses associated with relatively mild respiratory tract disease in humans. However, there is also a plethora of animal coronaviruses which have the potential to cross the species border. This regularly results in the emergence of new viruses in humans. In 2002, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and rapidly disappeared in May 2003. In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a possible threat to humans, but its pandemic potential so far is minimal, as human-to-human transmission is ineffective. The end of 2019 brought us information about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence, and the virus rapidly spread in 2020, causing an unprecedented pandemic. At present, studies on the virus are carried out using a surrogate system based on the immortalized simian Vero E6 cell line. This model is convenient for diagnostics, but it has serious limitations and does not allow for understanding of the biology and evolution of the virus. Here, we show that fully differentiated human airway epithelium cultures constitute an excellent model to study infection with the novel human coronavirus SARS-CoV-2. We observed efficient replication of the virus in the tissue, with maximal replication at 2鈥塪ays postinfection. The virus replicated in ciliated cells and was released apically

    Seleno-functionalization of quercetin improves the non-covalent inhibition of MproM^{pro} and its antiviral activity in cells against SARS-CoV-2

    Get PDF
    The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 渭M and 8 渭M, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile
    corecore