13 research outputs found

    Summarizing performance for genome scale measurement of miRNA: reference samples and metrics

    Get PDF
    Background: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. Results: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. Conclusions: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process

    Summarizing performance for genome scale measurement of miRNA: reference samples and metrics

    Get PDF
    Background: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. Results: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. Conclusions: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process

    Relation Between Normal Rectal Methylation, Smoking Status, and the Presence or Absence of Colorectal Adenomas

    No full text
    BACKGROUND: Colorectal cancer (CRC) is 1 of the leading causes of death in the Western world. CRC develops from premalignant lesions, chiefly colorectal adenomas. Currently, the most accurate and recommended screening method for finding colorectal adenomas is colonoscopy performed on all individuals aged >50 years. However, the costs and risks associated with this procedure are relatively high. The objectives of the current study were to correlate epigenetic alterations that occur in normal rectal mucosa, smoking status, and age with the presence or absence of concomitant colorectal adenomas and to assess the potential clinical value of methylation in normal rectal biopsies as a screening assay for the presence of polyps and, hence, the need for a full colonoscopy. METHODS: One hundred thirteen normal rectal mucosal biopsies from 113 patients were studied. DNA was extracted, modified with sodium bisulfite, and subjected to real-time quantitative, methylation-specific polymerase chain reaction analysis for the following genes: adenomatous polyposis coli (APC); cadherin 1, type 1, E-cadherin (epithelial) (CDH1); estrogen receptor 1 (ESR1); cytokine high in normal 1 (HIN1); hyperplastic polyposis protein 1 (HPP1); O-6 methylguanine-DNA methyltransferase (MGMT); neural epidermal growth factor-like 1 (NELL1); splicing factor 3B, 14-kDa subunit (p14); cyclin-dependent kinase (CDK) inhibitor 2B (inhibits CDK4) (p15); retinoic acid receptor beta (RAR beta); somatostatin (SST); tachykinin, precursor 1 (TAC1); and tissue inhibitor of metalloproteinase (TIMP) metallopeptidase inhibitor 3 (TIMP3). Data were then analyzed using several proprietary software programs. RESULTS: By using several sets of genes, clinical characteristics, and multivariate analyses, the authors developed a prediction model for the presence of concomitant colorectal adenomas at the time of rectal biopsy. They also observed strong correlations between smoking status and rectal methylation pattern and between smoking status and the presence or risk of concomitant adenomas. CONCLUSIONS: A prediction model was developed for the presence of colorectal adenomas based on gene methylation patterns in the normal rectum. The results indicated that these genes may be involved in early stages of adenoma formation. The observed epigenetic alterations in these markers may be caused in part by the effects of smoking and/or age. Normal rectal methylation may be useful as a biomarker for narrowing the population in need of screening colonoscopy. Cancer 2010;116:4495-501. (C) 2010 American Cancer Society

    Summarizing performance for genome scale measurement of miRNA: reference samples and metrics

    Get PDF
    Abstract Background The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. Results Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. Conclusions The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process
    corecore