12 research outputs found

    The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells

    Get PDF
    AbstractThe plasminogen activator Pla of Yersinia pestis belongs to the omptin family of enterobacterial surface proteases and is responsible for the highly efficient invasion of the plague bacterium from the subcutaneous infection site into the circulation. Y. pestis has been reported to invade human epithelial cells. Here, we investigated the role of Pla in bacterial invasion into human endothelial cells. Expression of Pla in recombinant Escherichia coli XL1(pMRK1) enhanced bacterial invasion into ECV304 cells. The invasiveness was not affected by substitution mutation at the residues S99 or D206 that are needed for the proteolytic activity of Pla. Pla-expressing bacteria adhered to the extracellular matrix of ECV304 cells. Only weak adhesion and poor invasion were seen with the recombinant E. coli XL1(pMRK2), which expresses the omptin homolog from E. coli. The results identify Pla as an invasion protein of Y. pestis and show that the invasive function does not involve the proteolytic activity of Pla

    Lääketeollisuuden valvonnasta apua antibioottiresistenssin torjuntaan?

    No full text

    The Single Substitution I259T, Conserved in the Plasminogen Activator Pla of Pandemic Yersinia pestis Branches, Enhances Fibrinolytic Activity â–ż

    No full text
    The outer membrane plasminogen activator Pla of Yersinia pestis is a central virulence factor in plague. The primary structure of the Pla β-barrel is conserved in Y. pestis biovars Antiqua, Medievalis, and Orientalis, which are associated with pandemics of plague. The Pla molecule of the ancestral Y. pestis lineages Microtus and Angola carries the single amino acid change T259I located in surface loop 5 of the β-barrel. Recombinant Y. pestis KIM D34 or Escherichia coli XL1 expressing Pla T259I was impaired in fibrinolysis and in plasminogen activation. Lack of detectable generation of the catalytic light chain of plasmin and inactivation of plasmin enzymatic activity by the Pla T259I construct indicated that Microtus Pla cleaved the plasminogen molecule more unspecifically than did common Pla. The isoform pattern of the Pla T259I molecule was different from that of the common Pla molecule. Microtus Pla was more efficient than wild-type Pla in α2-antiplasmin inactivation. Pla of Y. pestis and PgtE of Salmonella enterica have evolved from the same omptin ancestor, and their comparison showed that PgtE was poor in plasminogen activation but exhibited efficient antiprotease inactivation. The substitution 259IIDKT/TIDKN in PgtE, constructed to mimic the L5 region in Pla, altered proteolysis in favor of plasmin formation, whereas the reverse substitution 259TIDKN/IIDKT in Pla altered proteolysis in favor of α2-antiplasmin inactivation. The results suggest that Microtus Pla represents an ancestral form of Pla that has evolved into a more efficient plasminogen activator in the pandemic Y. pestis lineages
    corecore