9 research outputs found
Modeling the live-pig trade network in Georgia: Implications for disease prevention and control.
Live pig trade patterns, drivers and characteristics, particularly in backyard predominant systems, remain largely unexplored despite their important contribution to the spread of infectious diseases in the swine industry. A better understanding of the pig trade dynamics can inform the implementation of risk-based and more cost-effective prevention and control programs for swine diseases. In this study, a semi-structured questionnaire elaborated by FAO and implemented to 487 farmers was used to collect data regarding basic characteristics about pig demographics and live-pig trade among villages in the country of Georgia, where very scarce information is available. Social network analysis and exponential random graph models were used to better understand the structure, contact patterns and main drivers for pig trade in the country. Results indicate relatively infrequent (a total of 599 shipments in one year) and geographically localized (median Euclidean distance between shipments = 6.08 km; IQR = 0-13.88 km) pig movements in the studied regions. The main factors contributing to live-pig trade movements among villages were being from the same region (i.e., local trade), usage of a middleman or a live animal market to trade live pigs by at least one farmer in the village, and having a large number of pig farmers in the village. The identified villages' characteristics and structural network properties could be used to inform the design of more cost-effective surveillance systems in a country which pig industry was recently devastated by African swine fever epidemics and where backyard production systems are predominant
Recommended from our members
Modeling the live-pig trade network in Georgia: Implications for disease prevention and control.
Live pig trade patterns, drivers and characteristics, particularly in backyard predominant systems, remain largely unexplored despite their important contribution to the spread of infectious diseases in the swine industry. A better understanding of the pig trade dynamics can inform the implementation of risk-based and more cost-effective prevention and control programs for swine diseases. In this study, a semi-structured questionnaire elaborated by FAO and implemented to 487 farmers was used to collect data regarding basic characteristics about pig demographics and live-pig trade among villages in the country of Georgia, where very scarce information is available. Social network analysis and exponential random graph models were used to better understand the structure, contact patterns and main drivers for pig trade in the country. Results indicate relatively infrequent (a total of 599 shipments in one year) and geographically localized (median Euclidean distance between shipments = 6.08 km; IQR = 0-13.88 km) pig movements in the studied regions. The main factors contributing to live-pig trade movements among villages were being from the same region (i.e., local trade), usage of a middleman or a live animal market to trade live pigs by at least one farmer in the village, and having a large number of pig farmers in the village. The identified villages' characteristics and structural network properties could be used to inform the design of more cost-effective surveillance systems in a country which pig industry was recently devastated by African swine fever epidemics and where backyard production systems are predominant
Modeling the live-pig trade network in Georgia: Implications for disease prevention and control.
Live pig trade patterns, drivers and characteristics, particularly in backyard predominant systems, remain largely unexplored despite their important contribution to the spread of infectious diseases in the swine industry. A better understanding of the pig trade dynamics can inform the implementation of risk-based and more cost-effective prevention and control programs for swine diseases. In this study, a semi-structured questionnaire elaborated by FAO and implemented to 487 farmers was used to collect data regarding basic characteristics about pig demographics and live-pig trade among villages in the country of Georgia, where very scarce information is available. Social network analysis and exponential random graph models were used to better understand the structure, contact patterns and main drivers for pig trade in the country. Results indicate relatively infrequent (a total of 599 shipments in one year) and geographically localized (median Euclidean distance between shipments = 6.08 km; IQR = 0-13.88 km) pig movements in the studied regions. The main factors contributing to live-pig trade movements among villages were being from the same region (i.e., local trade), usage of a middleman or a live animal market to trade live pigs by at least one farmer in the village, and having a large number of pig farmers in the village. The identified villages' characteristics and structural network properties could be used to inform the design of more cost-effective surveillance systems in a country which pig industry was recently devastated by African swine fever epidemics and where backyard production systems are predominant
Variables retained and results of the three step ERGM construction process to model the probability of trade among villages in Georgia as a function of village and network characteristics.
<p>NA = not applicable; x = node/edge attributes; Xi = vector of node/edge attributes; Si = vector of structural attributes; OR = Odds Ratio; CI = Confidence Interval.</p
A: Number of farmers (n = 487) interviewed per region (n = 4), number of pigs shipped and number of shipments within region in Georgia, as reported by farmers during a 12 months’ scope questionnaire; B: Monthly frequency of shipments (bars) and median number of pigs transported per shipment (dots), C: Network visualization.
<p>Colors of the regions in the map correspond to colors of the network. <i>UK</i> = Unknown; Pig image = Total number of pigs shipped within region; Truck image = Total number of shipments within region.</p
Frequency distribution of the studied goodness of fit diagnostic parameters of the m2 (final) exponential random graph model of the swine trade industry in Georgia, during a twelve-month period.
<p>Black lines represent the observed data. Boxplots cover the values of 100 randomly-simulated networks that conform to the model; whiskers represent the 95% CI.</p
Network metrics of the pig movement network at the village level in four regions of Georgia.
<p>Network metrics of the pig movement network at the village level in four regions of Georgia.</p
Modeling the live-pig trade network in Georgia: Implications for disease prevention and control
Live pig trade patterns, drivers and characteristics, particularly in backyard predominant systems, remain largely unexplored despite their important contribution to the spread of infectious diseases in the swine industry. A better understanding of the pig trade dynamics can inform the implementation of risk-based and more cost-effective prevention and control programs for swine diseases. In this study, a semi-structured questionnaire elaborated by FAO and implemented to 487 farmers was used to collect data regarding basic characteristics about pig demographics and live-pig trade among villages in the country of Georgia, where very scarce information is available. Social network analysis and exponential random graph models were used to better understand the structure, contact patterns and main drivers for pig trade in the country. Results indicate relatively infrequent (a total of 599 shipments in one year) and geographically localized (median Euclidean distance between shipments = 6.08 km; IQR = 0-13.88 km) pig movements in the studied regions. The main factors contributing to live-pig trade movements among villages were being from the same region (i.e., local trade), usage of a middleman or a live animal market to trade live pigs by at least one farmer in the village, and having a large number of pig farmers in the village. The identified villages' characteristics and structural network properties could be used to inform the design of more cost-effective surveillance systems in a country which pig industry was recently devastated by African swine fever epidemics and where backyard production systems are predominant