136 research outputs found

    Planet Formation by Coagulation: A Focus on Uranus and Neptune

    Get PDF
    Planets form in the circumstellar disks of young stars. We review the basic physical processes by which solid bodies accrete each other and alter each others' random velocities, and we provide order-of-magnitude derivations for the rates of these processes. We discuss and exercise the two-groups approximation, a simple yet powerful technique for solving the evolution equations for protoplanet growth. We describe orderly, runaway, neutral, and oligarchic growth. We also delineate the conditions under which each occurs. We refute a popular misconception by showing that the outer planets formed quickly by accreting small bodies. Then we address the final stages of planet formation. Oligarchy ends when the surface density of the oligarchs becomes comparable to that of the small bodies. Dynamical friction is no longer able to balance viscous stirring and the oligarchs' random velocities increase. In the inner-planet system, oligarchs collide and coalesce. In the outer-planet system, some of the oligarchs are ejected. In both the inner- and outer-planet systems, this stage ends once the number of big bodies has been reduced to the point that their mutual interactions no longer produce large-scale chaos. Subsequently, dynamical friction by the residual small bodies circularizes and flattens their orbits. The final stage of planet formation involves the clean up of the residual small bodies. Clean up has been poorly explored.Comment: to appear in ARA&A (2004), 51 pages, 3 figure

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 μm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 μm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 μm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Oestrogen receptor β and neoadjuvant therapy with tamoxifen: prediction of response and effects of treatment

    Get PDF
    In order to elucidate the relative importance of oestrogen receptor (ER)α, ERβ and an ERβ variant (ERβ2/βcx) in the response of breast cancers to tamoxifen, tumour levels of each receptor were assessed in 36 patients before and after 3 months of neoadjuvant treatment with tamoxifen (20 mg daily). All patients were postmenopausal women presenting with large ERα-positive breast cancers. Clinical response to treatment was assessed by tumour volume changes as determined from sequential ultrasounds and pathological response by comparison of the tumour morphology before and after treatment. Of 33 cases, 23 (70%) were classified as having a clinical response and 16 (48%) as having a response pathologically. All tumours stained positively for ERα and ERβ and 15 out of 33 (45%) for ERβ2/βcx. There were no significant differences in quantitative expression of any receptor between tumours that subsequently responded and that did not, whether response was assessed clinically or pathologically. Tamoxifen treatment was associated with a decrease in ERα, but an increase was the most frequent change (17 out of 33) in ERβ, and no consistent change was evident in staining of the ERβ2/βcx variant. In summary, ERβ1 and ERβ2/βcx variant protein are detected in ERα-positive breast tumours but their expression is not associated with a response to tamoxifen. Differential changes in ERα and ERβ were seen with treatment

    Assessment of risk of insect-resistant transgenic crops to nontarget arthropods

    Get PDF
    An international initiative is developing a scientifically rigorous approach to evaluate the potential risks to nontarget arthropods (NTAs) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is used internationally within regulatory toxicology and environmental sciences. The approach focuses on the formulation and testing of clearly stated risk hypotheses, making maximum use of available data and using formal decision guidelines to progress between testing stages (or tiers). It is intended to provide guidance to regulatory agencies that are currently developing their own NTA risk assessment guidelines for IRGM crops and to help harmonize regulatory requirements between different countries and different regions of the world

    EBAG9/RCAS1 in human breast carcinoma: a possible factor in endocrine–immune interactions

    Get PDF
    EBAG9 has been recently identified as an oestrogen responsive gene in MCF-7 human breast carcinoma cells. EBAG9 is identical to RCAS1, a cancer cell surface antigen possibly involved in immune escape. In this study, we examined the expression of EBAG9/RCAS1 in human breast carcinomas using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). EBAG9 immunoreactivity was also associated with various clinicopathological parameters, including intratumoural infiltration of inflammatory cells, to examine the biological significance of EBAG9 in human breast carcinomas. EBAG9 immunoreactivity was detected in the entire surface and cytoplasm of carcinoma cells in 82 out of 91 invasive ductal carcinomas (90.1%). In non-neoplastic mammary glands, EBAG9 immunoreactivity was weakly present on the luminal surface of epithelial cells. Results from RT-PCR (n = 7) were consistent with those of immunohistochemistry. EBAG9 immunoreactivity was significantly associated with estrogen receptor (ER) α labelling index (P = 0.0081), and inversely associated with the degree of intratumoural infiltration of mononuclear cells (P = 0.0020), or CD3+ T lymphocytes (P = 0.0025). This study suggests that EBAG9 is produced via ER in carcinoma cells and inhibits the intratumoural infiltration of T lymphocytes in the context of a possible endocrine–immune interaction in human breast carcinomas. © 2001 Cancer Research Campaign http://www.bjcancer.co

    A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star

    Get PDF
    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation
    corecore