45 research outputs found

    Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage

    Get PDF
    Currently, autologous chondrocyte implantation (ACI) is the most commonly used cell-based therapy for the treatment of isolated femoral condyle lesions of the knee. A small number of centres performing ACI have reported encouraging long-term clinical results, but there is currently a lack of quantitative and qualitative biochemical data regarding the nature of the repair tissue. Glycosaminoglycan (GAG) structure influences physiological function and is likely to be important in the long-term stability of the repair tissue. The objective of this study was to use fluorophore-assisted carbohydrate electrophoresis (FACE) to both quantitatively and qualitatively analyse the GAG composition of repair tissue biopsies and compare them with age-matched cadaveric controls. We used immunohistochemistry to provide a baseline reference for comparison. Biopsies were taken from eight patients (22 to 52 years old) 1 year after ACI treatment and from four cadavers (20 to 50 years old). FACE quantitatively profiled the GAGs in as little as 5 μg of cartilage. The pattern and intensity of immunostaining were generally comparable with the data obtained with FACE. In the ACI repair tissue, there was a twofold reduction in chondroitin sulphate and keratan sulphate compared with age-matched control cartilage. By contrast, there was an increase in hyaluronan with significantly shorter chondroitin sulphate chains and less chondroitin 6-sulphate in repair tissue than control cartilage. The composition of the repair tissue thus is not identical to mature articular cartilage

    Mathematical modelling of fibre-enhanced perfusion inside\ud a tissue-engineering bioreactor

    Get PDF
    We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue- engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy’s law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier–Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution

    No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p > 0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10−6 M for Gen and >10−5 M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and bisphenol A, respectively) would do otherwise.BBSR

    Retrospective methods to estimate radiation dose at the site of breast cancer development after Hodgkin lymphoma radiotherapy.

    Get PDF
    BACKGROUND: An increased risk of breast cancer following radiotherapy for Hodgkin lymphoma (HL) has now been robustly established. In order to estimate the dose-response relationship more accurately, and to aid clinical decision making, a retrospective estimation of the radiation dose delivered to the site of the subsequent breast cancer is required. METHODS: For 174 Dutch and 170 UK female patients with breast cancer following HL treatment, the 3-dimensional position of the breast cancer in the affected breast was determined and transferred onto a CT-based anthropomorphic phantom. Using a radiotherapy treatment planning system the dose distribution on the CT-based phantom was calculated for the 46 different radiation treatment field set-ups used in the study population. The estimated dose at the centre of the breast cancer, and a margin to reflect dose uncertainty were determined on the basis of the location of the tumour and the isodose lines from the treatment planning. We assessed inter-observer variation and for 47 patients we compared the results with a previously applied dosimetry method. RESULTS: The estimated median point dose at the centre of the breast cancer location was 29.75 Gy (IQR 5.8-37.2), or about 75% of the prescribed radiotherapy dose. The median dose uncertainty range was 5.97 Gy. We observed an excellent inter-observer variation (ICC 0.89 (95% CI: 0.74-0.95)). The absolute agreement intra-class correlation coefficient (ICC) for inter-method variation was 0.59 (95% CI: 0.37-0.75), indicating (nearly) good agreement. There were no systematic differences in the dose estimates between observers or methods. CONCLUSION: Estimates of the dose at the point of a subsequent breast cancer show good correlation between methods, but the retrospective nature of the estimates means that there is always some uncertainty to be accounted for

    Germline MBD4-deficiency causes a multi-tumor predisposition syndrome

    Get PDF
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5′-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management

    Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL

    Get PDF
    Genetic abnormalities provide vital diagnostic and prognostic information in pediatric acute lymphoblastic leukemia (ALL) and are increasingly used to assign patients to risk groups. We recently proposed a novel classifier based on the copy-number alteration (CNA) profile of the 8 most commonly deleted genes in B-cell precursor ALL. This classifier defined 3 CNA subgroups in consecutive UK trials and was able to discriminate patients with intermediate-risk cytogenetics. In this study, we sought to validate the United Kingdom ALL (UKALL)-CNA classifier and reevaluate the interaction with cytogenetic risk groups using individual patient data from 3239 cases collected from 12 groups within the International BFM Study Group. The classifier was validated and defined 3 risk groups with distinct event-free survival (EFS) rates: good (88%), intermediate (76%), and poor (68%) (P < .001). There was no evidence of heterogeneity, even within trials that used minimal residual disease to guide therapy. By integrating CNA and cytogenetic data, we replicated our original key observation that patients with intermediate-risk cytogenetics can be stratified into 2 prognostic subgroups. Group A had an EFS rate of 86% (similar to patients with good-risk cytogenetics), while group B patients had a significantly inferior rate (73%, P < .001). Finally, we revised the overall genetic classification by defining 4 risk groups with distinct EFS rates: very good (91%), good (81%), intermediate (73%), and poor (54%), P < .001. In conclusion, the UKALL-CNA classifier is a robust prognostic tool that can be deployed in different trial settings and used to refine established cytogenetic risk groups

    Design and psychometric testing of a new patient-reported outcome measure for ankle treatment

    No full text
    Several outcome scores are used to assess the outcome of ankle surgery, but many are not validated and there is currently no ‘gold-standard’. Consequently, there is demand to develop a new ‘gold-standard’ score to assess ankle surgery. The study aim was to review existing scores to develop and validate a new patient-reported outcome measure (PROM) to assess the outcome of operative ankle surgery

    Immortalisation with hTERT Impacts on Sulphated Glycosaminoglycan Secretion and Immunophenotype in a Variable and Cell Specific Manner

    No full text
    <div><p>Background</p><p>Limited options for the treatment of cartilage damage have driven the development of tissue engineered or cell therapy alternatives reliant on <i>ex vivo</i> cell expansion. The study of chondrogenesis in primary cells is difficult due to progressive cellular aging and senescence. Immortalisation via the reintroduction of the catalytic component of telomerase, <i>hTERT</i>, could allow repeated, longitudinal studies to be performed while bypassing senescent phenotypes.</p><p>Methods</p><p>Three human cell types: bone marrow-derived stromal cells (BMA13), embryonic stem cell-derived (1C6) and chondrocytes (OK3) were transduced with <i>hTERT</i> (BMA13H, 1C6H and OK3H) and proliferation, surface marker expression and tri-lineage differentiation capacity determined. The sulphated glycosaminoglycan (sGAG) content of the monolayer and spent media was quantified in maintenance media (MM) and pro-chondrogenic media (PChM) and normalised to DNA.</p><p>Results</p><p><i>hTERT</i> expression was confirmed in transduced cells with proliferation enhancement in 1C6H and OK3H cells but not BMA13H. All cells were negative for leukocyte markers (CD19, CD34, CD45) and CD73 positive. CD14 was expressed at low levels on OK3 and OK3H and HLA-DR on BMA13 (84.8%). CD90 was high for BMA13 (84.9%) and OK3 (97.3%) and moderate for 1C6 (56.7%), expression was reduced in BMA13H (33.7%) and 1C6H (1.6%). CD105 levels varied (BMA13 87.7%, 1C6 8.2%, OK3 43.3%) and underwent reduction in OK3H (25.1%). 1C6 and BMA13 demonstrated osteogenic and adipogenic differentiation but mineralised matrix and lipid accumulation appeared reduced post <i>hTERT</i> transduction. Chondrogenic differentiation resulted in increased monolayer-associated sGAG in all primary cells and 1C6H (p<0.001), and BMA13H (p<0.05). In contrast OK3H demonstrated reduced monolayer-associated sGAG in PChM (p<0.001). Media-associated sGAG accounted for ≥55% (PChM-1C6) and ≥74% (MM-1C6H).</p><p>Conclusion</p><p>In conclusion, <i>hTERT</i> transduction could, but did not always, prevent senescence and cell phenotype, including differentiation potential, was affected in a variable manner. As such, these cells are not a direct substitute for primary cells in cartilage regeneration research.</p></div
    corecore