153 research outputs found

    Topologically Massive Gauge Theory: A Lorentzian Solution

    Get PDF
    We obtain a lorentzian solution for the topologically massive non-abelian gauge theory on AdS space by means of a SU(1, 1) gauge transformation of the previously found abelian solution. There exists a natural scale of length which is determined by the inverse topological mass. The topological mass is proportional to the square of the gauge coupling constant. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an abelian gauge transformation. Then we present the map from the AdS space to the pseudo-sphere including the topological mass. This is the lorentzian analog of the Hopf map. This map yields a global decomposition of the AdS space as a trivial circle bundle over the upper portion of the pseudo-sphere which is the Hyperboloid model for the Lobachevski geometry. This leads to a reduction of the abelian field equation onto the pseudo-sphere using a global section of the solution on the AdS space. Then we discuss the integration of the field equation using the Archimedes map from the pseudo-sphere to the cylinder over the ideal Poincare circle. We also present a brief discussion of the holonomy of the gauge potential and the dual-field strength on the upper portion of the pseudo-sphere.Comment: 23 pages, 1 postscript figur

    Uniqueness of static decompositions

    Full text link
    We classify static manifolds which admit more than one static decomposition whenever a condition on the curvature is fullfilled. For this, we take a standard static vector field and analyze its associated one parameter family of projections onto the base. We show that the base itself is a static manifold and the warping function satisfies severe restrictions, leading us to our classification results. Moreover, we show that certain condition on the lightlike sectional curvature ensures the uniqueness of static decomposition for Lorentzian manifolds.Comment: 14 page

    Increased interactions and engulfment of dendrites by microglia precede Purkinje cell degeneration in a mouse model of Niemann Pick Type-C.

    Get PDF
    Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present

    Influence of large local and non-local bispectra on primordial black hole abundance

    Get PDF
    Primordial black holes represent a unique probe to constrain the early universe on small scales - providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates.Comment: 11 pages, 4 figures, updated to match published version in JCAP02(2016)029, Journal of Cosmology and Astroparticle Physics, Volume 2016, February 201

    Infrared effects in inflationary correlation functions

    Full text link
    In this article, I briefly review the status of infrared effects which occur when using inflationary models to calculate initial conditions for a subsequent hot, dense plasma phase. Three types of divergence have been identified in the literature: secular, "time-dependent" logarithms, which grow with time spent outside the horizon; "box-cutoff" logarithms, which encode a dependence on the infrared cutoff when calculating in a finite-sized box; and "quantum" logarithms, which depend on the ratio of a scale characterizing new physics to the scale of whatever process is under consideration, and whose interpretation is the same as conventional field theory. I review the calculations in which these divergences appear, and discuss the methods which have been developed to deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on nonlinear and nongaussian perturbation theory. Some improvements compared to version which will appear in CQG, especially in Sec. 2.3. 30 pages + references

    Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime

    Get PDF
    The Be X-ray binary EXO2030+375 was in an extended low-luminosity state during most of 2016. We observed this state with NuSTAR and Swift, supported by INTEGRAL observations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The H alpha data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV luminosity of similar to 6.8 x 10(35) erg s(-1) (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from similar to 1.5 to similar to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newton at much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 10(34) erg s(-1) where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling

    TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms

    Get PDF
    The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival

    Functional Analysis of Retinitis Pigmentosa 2 (RP2) Protein Reveals Variable Pathogenic Potential of Disease-Associated Missense Variants

    Get PDF
    Genetic mutations are frequently associated with diverse phenotypic consequences, which limits the interpretation of the consequence of a variation in patients. Mutations in the retinitis pigmentosa 2 (RP2) gene are associated with X-linked RP, which is a phenotypically heterogenic form of retinal degeneration. The purpose of this study was to assess the functional consequence of disease-associated mutations in the RP2 gene using an in vivo assay. Morpholino-mediated depletion of rp2 in zebrafish resulted in perturbations in photoreceptor development and microphthalmia (small eye). Ultrastructural and immunofluorescence analyses revealed defective photoreceptor outer segment development and lack of expression of photoreceptor-specific proteins. The retinopathy phenotype could be rescued by expressing the wild-type human RP2 protein. Notably, the tested RP2 mutants exhibited variable degrees of rescue of rod versus cone photoreceptor development as well as microphthalmia. Our results suggest that RP2 plays a key role in photoreceptor development and maintenance in zebrafish and that the clinical heterogeneity associated with RP2 mutations may, in part, result from its potentially distinct functional relevance in rod versus cone photoreceptors

    Combination antiretroviral drugs in PLGA nanoparticle for HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination antiretroviral (AR) therapy continues to be the mainstay for HIV treatment. However, antiretroviral drug nonadherence can lead to the development of resistance and treatment failure. We have designed nanoparticles (NP) that contain three AR drugs and characterized the size, shape, and surface charge. Additionally, we investigated the <it>in vitro </it>release of the AR drugs from the NP using peripheral blood mononuclear cells (PBMCs).</p> <p>Methods</p> <p>Poly-(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing ritonavir (RTV), lopinavir (LPV), and efavirenz (EFV) were fabricated using multiple emulsion-solvent evaporation procedure. The nanoparticles were characterized by electron microscopy and zeta potential for size, shape, and charge. The intracellular concentration of AR drugs was determined over 28 days from NPs incubated with PBMCs. Macrophages were imaged by fluorescent microscopy and flow cytometry after incubation with fluorescent NPs. Finally, macrophage cytotoxicity was determined by MTT assay.</p> <p>Results</p> <p>Nanoparticle size averaged 262 ± 83.9 nm and zeta potential -11.4 ± 2.4. AR loading averaged 4% (w/v). Antiretroviral drug levels were determined in PBMCs after 100 μg of NP in 75 μL PBS was added to media. Intracellular peak AR levels from NPs (day 4) were RTV 2.5 ± 1.1; LPV 4.1 ± 2.0; and EFV 10.6 ± 2.7 μg and continued until day 28 (all AR ≥ 0.9 μg). Free drugs (25 μg of each drug in 25 μL ethanol) added to PBMCs served as control were eliminated by 2 days. Fluorescence microscopy and flow cytometry demonstrated phagocytosis of NP into monocytes-derived macrophages (MDMs). Cellular MTT assay performed on MDMs demonstrated that NPs are not significantly cytotoxic.</p> <p>Conclusion</p> <p>These results demonstrated AR NPs could be fabricated containing three antiretroviral drugs (RTV, LPV, EFV). Sustained release of AR from PLGA NP show high drug levels in PBMCs until day 28 without cytotoxicity.</p
    • …
    corecore