662 research outputs found
Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning
The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks
A Synthetic Earth Gravity Model Designed Specifically for Testing Regional Gravimetric Geoid Determination Algorithms
A synthetic [simulated] Earth gravity model (SEGM) of the geoid, gravity and topography has been constructed over Australia specifically for validating regional gravimetric geoid determination theories, techniques and computer software. This regional high-resolution (1-arc-min by 1-arc-min) Australian SEGM (AusSEGM) is a combined source and effect model. The long-wavelength effect part (up to and including spherical harmonic degree and order 360) is taken from an assumed errorless EGM96 global geopotential model. Using forward modelling via numerical Newtonian integration, the short-wavelength source part is computed from a high-resolution (3-arc-sec by 3-arc-sec) synthetic digital elevation model (SDEM), which is a fractal surface based on the GLOBE v1 DEM. All topographic masses are modelled with a constant mass-density of 2,670 kg/m3. Based on these input data, gravity values on the synthetic topography (on a grid and at arbitrarily distributed discrete points) and consistent geoidal heights at regular 1-arc-min geographical grid nodes have been computed. The precision of the synthetic gravity and geoid data (after a first iteration) is estimated to be better than 30 μ Gal and 3 mm, respectively, which reduces to 1 μ Gal and 1 mm after a second iteration.The second iteration accounts for the changes in the geoid due to the superposed synthetic topographic mass distribution. The first iteration of AusSEGM is compared with Australian gravity and GPS-levelling data to verify that it gives a realistic representation of the Earth’s gravity field. As a by-product of this comparison, AusSEGM gives further evidence of the north–south-trending error in the Australian Height Datum. The freely available AusSEGM-derived gravity and SDEM data, included as Electronic Supplementary Material (ESM) with this paper, can be used to compute a geoid model that, if correct, will agree to in 3 mm with the AusSEGM geoidal heights, thus offering independent verification of theories and numerical techniques used for regional geoid modelling
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
KNIME-CDK: Workflow-driven cheminformatics
BACKGROUND: Cheminformaticians have to routinely process and analyse libraries of small molecules. Among other things, that includes the standardization of molecules, calculation of various descriptors, visualisation of molecular structures, and downstream analysis. For this purpose, scientific workflow platforms such as the Konstanz Information Miner can be used if provided with the right plug-in. A workflow-based cheminformatics tool provides the advantage of ease-of-use and interoperability between complementary cheminformatics packages within the same framework, hence facilitating the analysis process. RESULTS: KNIME-CDK comprises functions for molecule conversion to/from common formats, generation of signatures, fingerprints, and molecular properties. It is based on the Chemistry Development Toolkit and uses the Chemical Markup Language for persistence. A comparison with the cheminformatics plug-in RDKit shows that KNIME-CDK supports a similar range of chemical classes and adds new functionality to the framework. We describe the design and integration of the plug-in, and demonstrate the usage of the nodes on ChEBI, a library of small molecules of biological interest. CONCLUSIONS: KNIME-CDK is an open-source plug-in for the Konstanz Information Miner, a free workflow platform. KNIME-CDK is build on top of the open-source Chemistry Development Toolkit and allows for efficient cross-vendor structural cheminformatics. Its ease-of-use and modularity enables researchers to automate routine tasks and data analysis, bringing complimentary cheminformatics functionality to the workflow environment
A practical Java tool for small-molecule compound appraisal
The increased use of small-molecule compound screening by new users from a variety of different academic backgrounds calls for adequate software to administer, appraise, analyse and exchange information obtained from screening experiments. While software and spreadsheet solutions exist, there is a need for software that can be easily deployed and is convenient to use.The Java application cApp addresses this need and aids in the handling and storage of information on small-molecule compounds. The software is intended for the appraisal of compounds with respect to their physico-chemical properties, analysis in relation to adherence to likeness rules as well as recognition of pan-assay interference components and cross-linking with identical entries in the PubChem Compound Database. Results are displayed in a tabular form in a graphical interface, but can also be written in an HTML or PDF format. The output of data in ASCII format allows for further processing of data using other suitable programs. Other features include similarity searches against user-provided compound libraries and the PubChem Compound Database, as well as compound clustering based on a MaxMin algorithm.cApp is a personal database solution for small-molecule compounds which can handle all major chemical formats. Being a standalone software, it has no other dependency than the Java virtual machine and is thus conveniently deployed. It streamlines the analysis of molecules with respect to physico-chemical properties and drug discovery criteria; cApp is distributed under the GNU Affero General Public License version 3 and available from http://www.structuralchemistry.org/pcsb/. To download cApp, users will be asked for their name, institution and email address. A detailed manual can also be downloaded from this site, and online tutorials are available at http://www.structuralchemistry.org/pcsb/capp.php
Too little but not too late: Results of a literature review to improve routine immunization programs in developing countries
<p>Abstract</p> <p>Background</p> <p>Globally, immunization services have been the center of renewed interest with increased funding to improve services, acceleration of the introduction of new vaccines, and the development of a health systems approach to improve vaccine delivery. Much of the credit for the increased attention is due to the work of the GAVI Alliance and to new funding streams. If routine immunization programs are to take full advantage of the newly available resources, managers need to understand the range of proven strategies and approaches to deliver vaccines to reduce the incidence of diseases. In this paper, we present strategies that may be used at the sub-national level to improve routine immunization programs.</p> <p>Methods</p> <p>We conducted a systematic review of studies and projects reported in the published and gray literature. Each paper that met our inclusion criteria was rated based on methodological rigor and data were systematically abstracted. Routine-immunization – specific papers with a methodological rigor rating of greater than 60% and with conclusive results were reported.</p> <p>Results</p> <p>Greater than 11,000 papers were identified, of which 60 met our inclusion criteria and 25 papers were reported. Papers were grouped into four strategy approaches: bringing immunizations closer to communities (n = 11), using information dissemination to increase demand for vaccination (n = 3), changing practices in fixed sites (n = 4), and using innovative management practices (n = 7).</p> <p>Conclusion</p> <p>Immunization programs are at a historical crossroads in terms of developing new funding streams, introducing new vaccines, and responding to the global interest in the health systems approach to improving immunization delivery. However, to complement this, actual service delivery needs to be strengthened and program managers must be aware of proven strategies. Much was learned from the 25 papers, such as the use of non-health workers to provide numerous services at the community level. However it was startling to see how few papers were identified and in particular how few were of strong scientific quality. Further well-designed and well-conducted scientific research is warranted. Proposed areas of additional research include integration of additional services with immunization delivery, collaboration of immunization programs with new partners, best approaches to new vaccine introduction, and how to improve service delivery.</p
Azimuthal anisotropy and correlations at large transverse momenta in and Au+Au collisions at = 200 GeV
Results on high transverse momentum charged particle emission with respect to
the reaction plane are presented for Au+Au collisions at =
200 GeV. Two- and four-particle correlations results are presented as well as a
comparison of azimuthal correlations in Au+Au collisions to those in at
the same energy. Elliptic anisotropy, , is found to reach its maximum at
GeV/c, then decrease slowly and remain significant up to
-- 10 GeV/c. Stronger suppression is found in the back-to-back
high- particle correlations for particles emitted out-of-plane compared to
those emitted in-plane. The centrality dependence of at intermediate
is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
The results from the STAR Collaboration on directed flow (v_1), elliptic flow
(v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution
of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and
compared with results from other experiments and theoretical models. Results
for identified particles are presented and fit with a Blast Wave model.
Different anisotropic flow analysis methods are compared and nonflow effects
are extracted from the data. For v_2, scaling with the number of constituent
quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and
quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures
modified, but data the same. However, in Fig. 35 the hydro calculations are
corrected in this version. The data tables are available at
http://www.star.bnl.gov/central/publications/ by searching for "flow" and
then this pape
- …