27,455 research outputs found

    Transition from antibunching to bunching in cavity QED

    Full text link
    The photon statistics of the light emitted from an atomic ensemble into a single field mode of an optical cavity is investigated as a function of the number of atoms. The light is produced in a Raman transition driven by a pump laser and the cavity vacuum [M.Hennrich et al., Phys. Rev. Lett. 85, 4672 (2000)], and a recycling laser is employed to repeat this process continuously. For weak driving, a smooth transition from antibunching to bunching is found for about one intra-cavity atom. Remarkably, the bunching peak develops within the antibunching dip. For saturated driving and a growing number of atoms, the bunching amplitude decreases and the bunching duration increases, indicating the onset of Raman lasing.Comment: 4 pages, 4 figure

    Vacuum-Stimulated Raman Scattering based on Adiabatic Passage in a High-Finesse Optical Cavity

    Full text link
    We report on the first observation of stimulated Raman scattering from a Lambda-type three-level atom, where the stimulation is realized by the vacuum field of a high-finesse optical cavity. The scheme produces one intracavity photon by means of an adiabatic passage technique based on a counter-intuitive interaction sequence between pump laser and cavity field. This photon leaves the cavity through the less-reflecting mirror. The emission rate shows a characteristic dependence on the cavity and pump detuning, and the observed spectra have a sub-natural linewidth. The results are in excellent agreement with numerical simulations.Comment: 4 pages, 5 figure

    Electrical resistivity of the Ti4O7 Magneli phase under high pressure

    Full text link
    We have measured resistivity as a function of temperature and pressure of Ti4O7 twinned crystals using different contact configurations. Pressures over 4kbar depress the localization of bipolarons and allow the study of the electrical conduction of the bipolaronic phase down to low temperatures. For pressures P > 40 kbar the bipolaron formation transition is suppressed and a nearly pressure independent behavior is obtained for the resistivity. We observed an anisotropic conduction. When current is injected parallel to the principal axis, a metallic conduction with interacting carrier effects is predominant. A superconducting state was not obtained down to 1.2 K, although evidences of the proximity of a quantum critical point were noticed. While when current is injected non-parallel to the crystal's principal axis, we obtained a logarithmic divergence of the resistivity at low temperatures. For this case, our results for the high pressure regime can be interpreted in the framework of interacting carriers (polarons or bipolarons) scattered by Two Level Systems.Comment: 9 Revtex pages, 12 EPS figures included, submitted to The European Physical Journal B. Contact author: C. Acha (e-mail address: [email protected]

    Memory texts and memory work: Performances of memory in and with visual media

    Get PDF
    The online version of this article can be found at: http://mss.sagepub.com/content/early/2010/05/24/175069801037003

    Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region

    Full text link
    Electroweak radiative corrections give rise to large negative, double-logarithmically enhanced corrections in the TeV region. These are partly compensated by real radiation and, moreover, affected by selecting isospin-noninvariant external states. We investigate the impact of real gauge boson radiation more quantitatively by considering different restricted final state configurations. We consider successively a massive abelian gauge theory, a spontaneously broken SU(2) theory and the electroweak Standard Model. We find that details of the choice of the phase space cuts, in particular whether a fraction of collinear and soft radiation is included, have a strong impact on the relative amount of real and virtual corrections.Comment: 20 pages, 4 figure

    Doubly Charmed Baryons in COMPASS

    Full text link
    The search for doubly charmed baryons has been a topic for COMPASS from the beginning. Requiring however a complete spectrometer and highest possible trigger rates this measurement has been postponed. The scenario for such a measurement in the second phase of COMPASS is outlined here. First studies of triggering and simulation of the setup have been performed. New rate estimates based on recent measurements from SELEX at FNAL are presented.Comment: 13 pages, 15 figures, contribution to the Workshop on Future Physics at COMPASS, CERN, Geneva, September 26-27 2002, to appear as CERN Yellow Repor

    Tight local approximation results for max-min linear programs

    Full text link
    In a bipartite max-min LP, we are given a bipartite graph \myG = (V \cup I \cup K, E), where each agent v∈Vv \in V is adjacent to exactly one constraint i∈Ii \in I and exactly one objective k∈Kk \in K. Each agent vv controls a variable xvx_v. For each i∈Ii \in I we have a nonnegative linear constraint on the variables of adjacent agents. For each k∈Kk \in K we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent vv must choose xvx_v based on input within its constant-radius neighbourhood in \myG. We show that for every ϵ>0\epsilon>0 there exists a local algorithm achieving the approximation ratio ΔI(1−1/ΔK)+ϵ{\Delta_I (1 - 1/\Delta_K)} + \epsilon. We also show that this result is the best possible -- no local algorithm can achieve the approximation ratio ΔI(1−1/ΔK){\Delta_I (1 - 1/\Delta_K)}. Here ΔI\Delta_I is the maximum degree of a vertex i∈Ii \in I, and ΔK\Delta_K is the maximum degree of a vertex k∈Kk \in K. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms.Comment: 16 page
    • …
    corecore