2,614 research outputs found
Mesoscale theory of grains and cells: crystal plasticity and coarsening
Solids with spatial variations in the crystalline axes naturally evolve into
cells or grains separated by sharp walls. Such variations are mathematically
described using the Nye dislocation density tensor. At high temperatures,
polycrystalline grains form from the melt and coarsen with time: the
dislocations can both climb and glide. At low temperatures under shear the
dislocations (which allow only glide) form into cell structures. While both the
microscopic laws of dislocation motion and the macroscopic laws of coarsening
and plastic deformation are well studied, we hitherto have had no simple,
continuum explanation for the evolution of dislocations into sharp walls. We
present here a mesoscale theory of dislocation motion. It provides a
quantitative description of deformation and rotation, grounded in a microscopic
order parameter field exhibiting the topologically conserved quantities. The
topological current of the Nye dislocation density tensor is derived from a
microscopic theory of glide driven by Peach-Koehler forces between dislocations
using a simple closure approximation. The resulting theory is shown to form
sharp dislocation walls in finite time, both with and without dislocation
climb.Comment: 5 pages, 3 figure
Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor
We derive general relations between grain boundaries, rotational
deformations, and stress-free states for the mesoscale continuum Nye
dislocation density tensor. Dislocations generally are associated with
long-range stress fields. We provide the general form for dislocation density
fields whose stress fields vanish. We explain that a grain boundary (a
dislocation wall satisfying Frank's formula) has vanishing stress in the
continuum limit. We show that the general stress-free state can be written
explicitly as a (perhaps continuous) superposition of flat Frank walls. We show
that the stress-free states are also naturally interpreted as configurations
generated by a general spatially-dependent rotational deformation. Finally, we
propose a least-squares definition for the spatially-dependent rotation field
of a general (stressful) dislocation density field.Comment: 9 pages, 3 figure
Parton Distributions Working Group
The main focus of this working group was to investigate the different issues
associated with the development of quantitative tools to estimate parton
distribution functions uncertainties. In the conclusion, we introduce a
"Manifesto" that describes an optimal method for reporting data.Comment: Report of the Parton Distributions Working Group of the 'QCD and Weak
Boson Physics workshop in preparation for Run II at the Fermilab Tevatron'.
Co-Conveners: L. de Barbaro, S.A. Keller, S. Kuhlmann, H. Schellman, and
W.-K. Tun
DECam integration tests on telescope simulator
The Dark Energy Survey (DES) is a next generation optical survey aimed at
measuring the expansion history of the universe using four probes: weak
gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and
Type Ia supernovae. To perform the survey, the DES Collaboration is building
the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera
which will be mounted at the Blanco 4-meter telescope at the Cerro Tololo
Inter- American Observatory. DES will survey 5000 square degrees of the
southern galactic cap in 5 filters (g, r, i, z, Y). DECam will be comprised of
74 250 micron thick fully depleted CCDs: 62 2k x 4k CCDs for imaging and 12 2k
x 2k CCDs for guiding and focus. Construction of DECam is nearing completion.
In order to verify that the camera meets technical specifications for DES and
to reduce the time required to commission the instrument, we have constructed a
full sized telescope simulator and performed full system testing and
integration prior to shipping. To complete this comprehensive test phase we
have simulated a DES observing run in which we have collected 4 nights worth of
data. We report on the results of these unique tests performed for the DECam
and its impact on the experiments progress.Comment: Proceedings of the 2nd International Conference on Technology and
Instrumentation in Particle Physics (TIPP 2011). To appear in Physics
Procedia. 8 pages, 3 figure
Magnetic properties of (VO)_2P_2O_7: two-plane structure and spin-phonon interactions
Detailed experiments on single-crystal (VO)_2P_2O_7 continue to reveal new
and unexpected features. We show that a model composed of two, independent
planes of spin chains with frustrated magnetic coupling is consistent with
nuclear magnetic resonance and inelastic neutron scattering measurements. The
pivotal role of PO_4 groups in mediating intrachain exchange interactions
explains both the presence of two chain types and their extreme sensitivity to
certain lattice vibrations, which results in the strong magnetoelastic coupling
observed by light scattering. We compute the respective modifications of the
spin and phonon dynamics due to this coupling, and illustrate their observable
consequences on the phonon frequencies, magnon dispersions, static
susceptibility and specific heat.Comment: 10 pages, 9 figure
Some closure operations in Zariski-Riemann spaces of valuation domains: a survey
In this survey we present several results concerning various topologies that
were introduced in recent years on spaces of valuation domains
Pattern selection as a nonlinear eigenvalue problem
A unique pattern selection in the absolutely unstable regime of driven,
nonlinear, open-flow systems is reviewed. It has recently been found in
numerical simulations of propagating vortex structures occuring in
Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed
through-flow. Unlike the stationary patterns in systems without through-flow
the spatiotemporal structures of propagating vortices are independent of
parameter history, initial conditions, and system length. They do, however,
depend on the boundary conditions in addition to the driving rate and the
through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation
elucidates how the pattern selection can be described by a nonlinear eigenvalue
problem with the frequency being the eigenvalue. Approaching the border between
absolute and convective instability the eigenvalue problem becomes effectively
linear and the selection mechanism approaches that of linear front propagation.
PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in:
Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current
Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann
(Springer, Berlin, 1996
Modeling of the Magnetic Susceptibilities of the Ambient- and High-Pressure Phases of (VO)_{2}P_{2}O_{7}
The magnetic susceptibilities chi versus temperature T of powders and single
crystals of the ambient-pressure (AP) and high-pressure (HP) phases of
(VO)_{2}P_{2}O_{7} are analyzed using an accurate theoretical prediction of
chi(T, J1, J2) for the spin-1/2 antiferromagnetic alternating-exchange (J1, J2)
Heisenberg chain. The results are consistent with recent models with two
distinct types of alternating-exchange chains in the AP phase and a single type
in the HP phase. The spin gap for each type of chain is derived from the
respective set of two fitted alternating exchange constants and the one-magnon
dispersion relation for each of the two types of chains in the AP phase is
predicted. The influences of interchain coupling on the derived intrachain
exchange constants, spin gaps, and dispersion relations are estimated using a
mean-field approximation for the interchain coupling. The accuracies of the
spin gaps obtained using fits to the low-T chi(T) data by theoretical low-T
approximations are determined. The results of these studies are compared with
previously reported estimates of the exchange couplings and spin gaps in the AP
and HP phases and with the magnon dispersion relations in the AP phase measured
previously using inelastic neutron scattering.Comment: 25 two-column REVTeX pages, 16 embedded figures, 6 tables. Figures 9
and 10 and Sec. IIIC revised due to errors in Eq. (1) of Ref. 24 which gives
the theoretical one-magnon dispersion relation for coupled
alternating-exchange chains. Minor revisions also made in other section
- …