Solids with spatial variations in the crystalline axes naturally evolve into
cells or grains separated by sharp walls. Such variations are mathematically
described using the Nye dislocation density tensor. At high temperatures,
polycrystalline grains form from the melt and coarsen with time: the
dislocations can both climb and glide. At low temperatures under shear the
dislocations (which allow only glide) form into cell structures. While both the
microscopic laws of dislocation motion and the macroscopic laws of coarsening
and plastic deformation are well studied, we hitherto have had no simple,
continuum explanation for the evolution of dislocations into sharp walls. We
present here a mesoscale theory of dislocation motion. It provides a
quantitative description of deformation and rotation, grounded in a microscopic
order parameter field exhibiting the topologically conserved quantities. The
topological current of the Nye dislocation density tensor is derived from a
microscopic theory of glide driven by Peach-Koehler forces between dislocations
using a simple closure approximation. The resulting theory is shown to form
sharp dislocation walls in finite time, both with and without dislocation
climb.Comment: 5 pages, 3 figure