99 research outputs found

    Diversification in the South American Pampas: the genetic and morphological variation of the widespread Petunia axillaris complex (Solanaceae)

    Get PDF
    Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately,interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.Fil: Turchetto, Caroline. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Fagundes, Nelson J. R.. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Segatto, Ana L. A.. Universidade Federal Do Rio Grande Do Sul; Brasil;Fil: Kuhlemeier, Cris. Institute of Plant Science; Suiza;Fil: Solis Neffa, Viviana Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); ArgentinaFil: Speranza, Pablo R. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Botánica del Nordeste (i); ArgentinaFil: Bonatto, Sandro L.. Pontificia Universidade Catolica Do Rio Grande Do Sul; Brasil;Fil: Freitas, Loreta B.. Universidade Federal Do Rio Grande Do Sul; Brasil

    Learning and the development of social identities in the subjects Care and Technology

    Get PDF
    This article discusses the way in which social identities structure the learning processes of students in two subjects in the Dutch secondary school curriculum - Care and Technology. It analyzes interviews with 23 students and their teachers with a view to explaining the disappointing results in these subjects in terms of breaking through gender and class-related preferences and learning outcomes. The subjects Care and Technology refer on the one hand to social practices with which groups of students identify in different ways. On the other hand students also appear to make active use of these subjects in their identity development. We argue for explicitly combining the notion that learning is peripheral participation in social practices with analyses of the power relationships that structure those practices. Also the question should be addressed of how the relative autonomy of the school can be used for organizing learning experiences in such a way that social positions and identities are not inhibitive, and the restrictive character of social identities is challenged

    An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis Thaliana is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Get PDF
    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications

    BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways

    Get PDF
    The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leave

    Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family

    Full text link
    The steady-state levels of mRNA produced by 14 genes encoding members of the tomtato chlorophyll a/b binding protein family were quantified. All genes were found to be expressed in leaf tissue, but the mRNAs accumulated to significantly different levels. The transcripts of cab 1A, cab 1B, cab 3A and cab 3B, encoding the Type I LHC proteins of photosystem II, are abundant, while low levels were measured for mRNAs encoding the Type II LHC II and the LHC I proteins. Sequences from the 5′ upstream regions (−400 to translational start) of some cab genes were determined in this study, and a total of 16 tomato cab gene promoters for which sequences are now available were analyzed. Significant sequence conservation was found for those genes which are tandemly linked on the chromosome. However, the level of sequence conservation is different for the different cab subfamilies, e.g. 85% similarity between cab 1A and cab 1D vs. 45% sequence similarity between cab 3A and cab 3C upstream sequences. Characteristic GATA repeats with a conserved spacing were found in 5′ upstream sequences of cab 1AD, cab 3 A-C, cab 11 and cab 12. The consensus sequence CCTTATCAT, which is believed to mediate light responsiveness, was found at different locations in the upstream sequences of cab 6B, cab 7, cab 8, cab 9, cab 10A, cab 10B and cab 11. In 11 out of 15 genes the transcription initiation site was found to center on the triplet TCA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47581/1/438_2004_Article_BF00280298.pd

    Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning

    Get PDF
    Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (P(i) ), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high P(i) levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis-related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. P(i) acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, P(i) repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that P(i) acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis-associated phosphate transporters. The role of these effects in the suppression of symbiosis under high P(i) conditions is discussed
    corecore