30 research outputs found

    Multiloop functional renormalization group for general models

    Get PDF
    We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018)] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well-suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy

    Fermi-edge singularity and the functional renormalization group

    Full text link
    We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two- particle-irreducible, multi-channel Hubbard-Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the X-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the X-ray-edge singularity and does not generalize

    Multiloop functional renormalization group that sums up all parquet diagrams

    Get PDF
    We present a multiloop flow equation for the four-point vertex in the functional renormalization group (fRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of fRG computations for the four-point vertex and, consequently, the self-energy. Using the X-ray-edge singularity as an example, we show that solving the multiloop fRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results

    Counting Feynman diagrams via many-body relations

    Get PDF
    We present an iterative algorithm to count Feynman diagrams via many-body relations. The algorithm allows us to count the number of diagrams of the exact solution for the general fermionic many-body problem at each order in the interaction. Further, we apply it to different parquet-type approximations and consider spin-resolved diagrams in the Hubbard model. Low-order results and asymptotics are explicitly discussed for various vertex functions and different two-particle channels. The algorithm can easily be implemented and generalized to many-body relations of different forms and levels of approximation

    RG transport theory for open quantum systems: Charge fluctuations in multilevel quantum dots in and out of equilibrium

    Full text link
    We present the real-time renormalization group (RTRG) method as a method to describe the stationary state current through generic multi-level quantum dots with a complex setup in nonequilibrium. The employed approach consists of a very rudiment approximation for the RG equations which neglects all vertex corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero temperature. We confirm this in the linear response regime with a benchmark against highly-accurate numerically renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations theoretically in quantum dot systems

    Computing local multipoint correlators using the numerical renormalization group

    Full text link
    Local three- and four-point correlators yield important insight into strongly correlated systems and have many applications. However, the nonperturbative, accurate computation of multipoint correlators is challenging, particularly in the real-frequency domain for systems at low temperatures. In the accompanying paper, we introduce generalized spectral representations for multipoint correlators. Here, we develop a numerical renormalization group (NRG) approach, capable of efficiently evaluating these spectral representations, to compute local three- and four-point correlators of quantum impurity models. The key objects in our scheme are partial spectral functions, encoding the system's dynamical information. Their computation via NRG allows us to simultaneously resolve various multiparticle excitations down to the lowest energies. By subsequently convolving the partial spectral functions with appropriate kernels, we obtain multipoint correlators in the imaginary-frequency Matsubara, the real-frequency zero-temperature, and the real-frequency Keldysh formalisms. We present exemplary results for the connected four-point correlators of the Anderson impurity model, and for resonant inelastic x-ray scattering (RIXS) spectra of related impurity models. Our method can treat temperatures and frequencies -- imaginary or real -- of all magnitudes, from large to arbitrarily small ones.Comment: See also the jointly published paper [F. B. Kugler, S.-S. B. Lee, and J. von Delft, Phys. Rev. X 11, 041006 (2021); arXiv:2101.00707

    Flavor fluctuations in 3-level quantum dots: Generic SU(3)-Kondo fixed point in equilibrium and non-Kondo fixed points in nonequilibrium

    Full text link
    We study a 33-level quantum dot in the singly occupied cotunneling regime coupled via a generic tunneling matrix to several multi-channel leads in equilibrium or nonequilibrium. We derive an effective model where also each reservoir has three channels labelled by the quark flavors uu, dd and ss with an effective d.o.s. polarized w.r.t. an eight-dimensional FF-spin corresponding to the eight generators of SU(3)SU(3). In equilibrium we perform a standard poor man scaling analysis and show that tunneling via virtual intermediate states induces flavor fluctuations on the dot which become SU(3)SU(3)-symmetric at a characteristic and exponentially small low-energy scale TKT_K. Using the numerical renormalization group (NRG) we study in detail the linear conductance and confirm the SU(3)SU(3)-symmetric Kondo fixed point with universal conductance G=2.25e2/hG=2.25 e^2/h for various tunneling setups by tuning the level spacings on the dot. In contrast to the equilibrium case, we find in nonequilibrium that the fixed point model is not SU(3)SU(3)-symmetric but characterized by rotated FF-spins for each reservoir with total vanishing sum. At large voltage we analyse the FF-spin magnetization and the current in golden rule as function of a magnetic field for the isospin of the up/down quark and the level spacing to the strange quark. As a smoking gun to detect the nonequilibrium fixed point we find that the curve of zero FF-spin magnetization has a particular shape on the dot parameters. We propose that our findings can be generalized to the case of quantum dots with an arbitrary number NN of levels.Comment: 24 pages, 8 figure

    Analytic continuation of multipoint correlation functions

    Full text link
    Conceptually, the Matsubara formalism (MF), using imaginary frequencies, and the Keldysh formalism (KF), formulated in real frequencies, give equivalent results for systems in thermal equilibrium. The MF has less complexity and is thus more convenient than the KF. However, computing dynamical observables in the MF requires the analytic continuation from imaginary to real frequencies. The analytic continuation is well-known for two-point correlation functions (having one frequency argument), but, for multipoint correlators, a straightforward recipe for deducing all Keldysh components from the MF correlator had not been formulated yet. Recently, a representation of MF and KF correlators in terms of formalism-independent partial spectral functions and formalism-specific kernels was introduced by Kugler, Lee, and von Delft [Phys. Rev. X 11, 041006 (2021)]. We use this representation to formally elucidate the connection between both formalisms. We show how a multipoint MF correlator can be analytically continued to recover all partial spectral functions and yield all Keldysh components of its KF counterpart. The procedure is illustrated for various correlators of the Hubbard atom.Comment: 56 pages, 8 figure

    Real-frequency quantum field theory applied to the single-impurity Anderson model

    Full text link
    A major challenge in the field of correlated electrons is the computation of dynamical correlation functions. For comparisons with experiment, one is interested in their real-frequency dependence. This is difficult to compute, as imaginary-frequency data from the Matsubara formalism require analytic continuation, a numerically ill-posed problem. Here, we apply quantum field theory to the single-impurity Anderson model (AM), using the Keldysh instead of the Matsubara formalism with direct access to the self-energy and dynamical susceptibilities on the real-frequency axis. We present results from the functional renormalization group (fRG) at one-loop level and from solving the self-consistent parquet equations in the parquet approximation. In contrast to previous Keldysh fRG works, we employ a parametrization of the four-point vertex which captures its full dependence on three real-frequency arguments. We compare our results to benchmark data obtained with the numerical renormalization group and to second-order perturbation theory. We find that capturing the full frequency dependence of the four-point vertex significantly improves the fRG results compared to previous implementations, and that solving the parquet equations yields the best agreement with the NRG benchmark data, but is only feasible up to moderate interaction strengths. Our methodical advances pave the way for treating more complicated models in the future.Comment: 25 pages, 20 figure
    corecore