1,810 research outputs found

    Rapid mapping of visual receptive fields by filtered back-projection: application to multi-neuronal electrophysiology and imaging

    Get PDF
    Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo‐random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi‐electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca2+ indicator. We find that FBP offers several advantages over the commonly used spike‐triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons

    Cycling of Dense Core Vesicles Involved in Somatic Exocytosis of Serotonin by Leech Neurons

    Get PDF
    We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in the perinuclear region

    SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL

    Full text link
    corecore