162 research outputs found

    The Adoption of Quality Management Systems in the Fresh Produce Industry in Western Australia

    Get PDF
    In an examination of 37 fresh fruit and vegetable processing businesses in Perth, Western Australia, comparisons are drawn between those firms which have adopted a third party certified quality assurance (QA) system and those which have chosen not to adopt. Seven firms chose not to implement a QA system, citing high cost, lack of time, company structure and lack of statutory requirement for QA. Of those companies implementing QA, the deciding factor was a desire to meet the customers’ requirements. Firms held the belief that QA would enable them to better meet customer needs, provide greater customer assurance, improve communication, gain new customers, improve supplier relationships and ultimately to increase market share. The largest obstacle for the adoption of QA initially was the reluctance of employees to engage in the process. Subsequent obstacles were increased paperwork, high cost, lack of time, lack of suitably qualified staff and the need for more knowledgeable staff. Conversely, firms choosing not to use QA perceived themselves to be too small and to be constrained by the lack of capital and lack of incentives for adoption, such as customer requirements for QA

    Electronic and magnetic structure of epitaxial NiO/Fe3_3O4_4(001) heterostructures grown on MgO(001) and Nb-doped SrTiO3_3(001)

    Get PDF
    We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe3_3O4_4(001) bilayers grown on MgO(001) and Nb-SrTiO3_3(001) substrates. We compare the results with those obtained on pure Fe3_3O4_4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+^{3+} dominates at the surfaces due to maghemite (γ\gamma-Fe2_2O3_3) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe3_3O4_4. At the interface between NiO and Fe3_3O4_4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2_2O4_4 interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45∘^{\circ} rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe3_3O4_4 films grown on Nb-SrTiO3_3 exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite

    Effects of environmental parameters on chytrid infection prevalence of four marine diatoms : a laboratory case study

    Get PDF
    Acknowledgements: The Icelandic Research Fund (grant reference 141423-051) is gratefully acknowledged for its support to BS.Peer reviewedPublisher PD

    Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic and magneto-transport properties

    Full text link
    In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.Comment: 12 pages, 14 figs. accepted for publication at PR

    Electronic structure study by means of X-ray spectroscopy and theoretical calculations of the "ferric star" single molecule magnet

    Full text link
    The electronic structure of the single molecule magnet system M[Fe(L)2]3*4CHCl3 (M=Fe,Cr; L=CH3N(CH2CH2O)2) has been studied using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, soft X-ray emission spectroscopy, and density functional calculations. There is good agreement between theoretical calculations and experimental data. The valence band mainly consists of three bands between 2 eV and 30 eV. Both theory and experiments show that the top of the valence band is dominated by the hybridization between Fe 3d and O 2p bands. From the shape of the Fe 2p spectra it is argued that Fe in the molecule is most likely in the 2+ charge state. Its neighboring atoms (O,N) exhibit a magnetic polarisation yielding effective spin S=5/2 per iron atom, giving a high spin state molecule with a total S=5 effective spin for the case of M = Fe.Comment: Fig.2 replaced as it will appear in J. Chem. Phy

    Aspects of environmental impacts of seawater desalination : Cyprus as a case study

    Get PDF
    Acknowledgements The authors are grateful to the European Commission for supporting the activities carried out in the framework of the H2020 European project ZERO BRINE (project under grant agreement No. 730390). The authors would equally like to thank the TOTAL Foundation (Project “Diversity of brown algae in the Eastern Mediterranean”) and the UK Natural Environment Research Council for their support to FCK (program Oceans 2025 – WP 4.5 and grants NE/D521522/1 and NE/J023094/1). This work also received support from the Marine Alliance for Science and Technology for Scotland pooling initiative. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The authors would also like to thank representatives from competent authorities in Cyprus providing data, and specifically Nicoletta Kythreotou from the Department of Environment, George Ashikalis from the Transmission System Operator, Dr. DinosPoullis and Lia Georgiou from the Water Development Department.Peer reviewedPublisher PD

    Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae)

    Get PDF
    We thank the support from G. Millne (UoA), M. Rateb (UoA) and D. Zagal (UACh) in the histological preparations, mass spectrometry set-up and the cultivation of the hybrid progeny, respectively. PM and LM developed part of this work with BecasChile (Fondecyt) funding, specifically grants No. 72130422 (PM) and No. 73140389 (LM). We would like to acknowledge the British Council Newton Fund Institutional Links, project No. 261781172 for funding SS a postdoctoral research fellow. We are also grateful to the UK Natural Environment Research Council for their support to FCK (program Oceans 2025–WP 4.5 and grants NE/D521522/1 and NE/ J023094/1). This work also received support from the Marine Alliance for Science and Technology for Scotland pooling initiative. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. RW thanks financial support from Gobierno Regional de Los Lagos (grants FIC 2012 E7259-2 and FIC 2013 BIP30234872-0) and Fondef, Conicyt (HUAM AQ12I0010), which allows the sampling expeditions at Chiloe Island by PM, LM, DJP.Peer reviewedPublisher PD

    Therapeutic inhibition of FcgammaRIIb signaling targets leukemic stem cells in chronic myeloid leukemia

    Get PDF
    Despite the successes achieved with molecular targeted inhibition of the oncogenic driver Bcr-Abl in chronic myeloid leukemia (CML), the majority of patients still require lifelong tyrosine kinase inhibitor (TKI) therapy. This is primarily caused by resisting leukemic stem cells (LSCs), which prevent achievement of treatment-free remission in all patients. Here we describe the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing Fc gamma receptor IIb (FcgammaRIIb, CD32b) for being critical in LSC resistance and show that targeting FcgammaRIIb downstream signaling, by using a Food and Drug Administration-approved BTK inhibitor, provides a successful therapeutic approach. First, we identified FcgammaRIIb upregulation in primary CML stem cells. FcgammaRIIb depletion caused reduced serial re-plaiting efficiency and cell proliferation in malignant cells. FcgammaRIIb targeting in both a transgenic and retroviral CML mouse model provided in vivo evidence for successful LSC reduction. Subsequently, we identified BTK as a main downstream mediator and targeting the Bcr-Abl-FcgammaRIIb-BTK axis in primary CML CD34(+) cells using ibrutinib, in combination with standard TKI therapy, significantly increased apoptosis in quiescent CML stem cells thereby contributing to the eradication of LSCs.. As a potential curative therapeutic approach, we therefore suggest combining Bcr-Abl TKI therapy along with BTK inhibition
    • 

    corecore