276 research outputs found

    Direct NN-body simulations of globular clusters - II. Palomar 4

    Get PDF
    We use direct NN-body calculations to study the evolution of the unusually extended outer halo globular cluster Palomar 4 (Pal~4) over its entire lifetime in order to reproduce its observed mass, half-light radius, velocity dispersion and mass function slope at different radii. We find that models evolving on circular orbits, and starting from a non-mass segregated, canonical initial mass function (IMF) can reproduce neither Pal 4's overall mass function slope nor the observed amount of mass segregation. Including either primordial mass segregation or initially flattened IMFs does not reproduce the observed amount of mass segregation and mass function flattening simultaneously. Unresolved binaries cannot reconcile this discrepancy either. We find that only models with both a flattened IMF and primordial segregation are able to fit the observations. The initial (i.e. after gas expulsion) mass and half-mass radius of Pal~4 in this case are about 57000 M⊙{\odot} and 10 pc, respectively. This configuration is more extended than most globular clusters we observe, showing that the conditions under which Pal~4 formed must have been significantly different from that of the majority of globular clusters. We discuss possible scenarios for such an unusual configuration of Pal~4 in its early years.Comment: 14 pages, 12 figures, 1 tabl

    Absence of ferromagnetism in V-implanted ZnO single crystals

    Full text link
    The structural and magnetic properties of V doped ZnO are presented. V ions were introduced into hydrothermal ZnO single crystals by ion implantation with fluences of 1.2*10^16 to 6*10^16 cm^-2. Post-implantation annealing was performed in high vacuum from 823 K to 1023 K. The ZnO host material still partly remains in a crystalline state after irradiation, and is partly recovered by annealing. The V ions show a thermal mobility as revealed by depth profile Auger electron spectroscopy. Synchrotron radiation x-ray diffraction revealed no secondary phase formation which indicates the substitution of V onto Zn site. However in all samples no pronounced ferromagnetism was observed down to 5 K by a superconducting quantum interference device magnetometer.Comment: 13 pages, 4 figs, MMM conference 2007, accepted by J. Appl. Phy

    A novel crossed-molecular-beam experiment for investigating reactions of state- and conformationally selected strong-field-seeking molecules

    Get PDF
    The structure and quantum state of the reactants have a profound impact on the kinetics and dynamics of chemical reactions. Over the past years, significant advances have been made in the control and manipulation of molecules with external electric and magnetic fields in molecular-beam experiments for investigations of their state-, structure- and energy-specific chemical reactivity. Whereas studies for neutrals have so far mainly focused on weak-field-seeking species, we report here progress towards investigating reactions of strong-field-seeking molecules by introducing a novel crossed-molecular-beam experiment featuring an electrostatic deflector. The new setup enables the characterisation of state- and geometry-specific effects in reactions under single-collision conditions. As a proof of principle, we present results on the chemi-ionisation reaction of metastable neon atoms with rotationally state-selected carbonyl sulfide (OCS) molecules and show that the branching ratio between the Penning and dissociative ionisation pathways strongly depends on the initial rotational state of OCS.Comment: 8 pages, 6 figure

    Enhanced magnetization of ultrathin NiFe2_2O4_4 films on SrTiO3_3(001) related to cation disorder and anomalous strain

    Full text link
    NiFe2_2O4_4 thin films with varying thickness were grown on SrTiO3_3(001) by reactive molecular beam epitaxy. Soft and hard x-ray photoelectron spectroscopy measurements reveal a homogeneous cation distribution throughout the whole film with stoichiometric Ni:Fe ratios of 1:2 independent of the film thickness. Low energy electron diffraction and high resolution (grazing incidence) x-ray diffraction in addition to x-ray reflectivity experiments were conducted to obtain information of the film surface and bulk structure, respectively. For ultrathin films up to 7.3 nm, lateral tensile and vertical compressive strain is observed, contradicting an adaption at the interface of NiFe2_2O4_4 film and substrate lattice. The applied strain is accompanied by an increased lateral defect density, which is decaying for relaxed thicker films and attributed to the growth of lateral grains. Determination of cationic site occupancies in the inverse spinel structure by analysis of site sensitive diffraction peaks reveals low tetrahedral occupancies for thin, strained NiFe2_2O4_4 films, resulting in partial presence of deficient rock salt like structures. These structures are assumed to be responsible for the enhanced magnetization of up to ∼\sim250\% of the NiFe2_2O4_4 bulk magnetization as observed by superconducting quantum interference device magnetometry for ultrathin films below 7.3 nm thickness.Comment: 11 pages, 9 figure

    Electronic and magnetic structure of epitaxial NiO/Fe3_3O4_4(001) heterostructures grown on MgO(001) and Nb-doped SrTiO3_3(001)

    Get PDF
    We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe3_3O4_4(001) bilayers grown on MgO(001) and Nb-SrTiO3_3(001) substrates. We compare the results with those obtained on pure Fe3_3O4_4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+^{3+} dominates at the surfaces due to maghemite (γ\gamma-Fe2_2O3_3) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe3_3O4_4. At the interface between NiO and Fe3_3O4_4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2_2O4_4 interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45∘^{\circ} rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe3_3O4_4 films grown on Nb-SrTiO3_3 exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite

    Do cannabis and urbanicity co-participate in causing psychosis? Evidence from a 10-year follow-up cohort study

    Get PDF
    Background Cannabis use is considered a component cause of psychotic illness, interacting with genetic and other environmental risk factors. Little is known, however, about these putative interactions. The present study investigated whether an urban environment plays a role in moderating the effects of adolescent cannabis use on psychosis risk. Method Prospective data (n=1923, aged 14-24 years at baseline) from the longitudinal population-based German Early Developmental Stages of Psychopathology cohort study were analysed. Urbanicity was assessed at baseline and defined as living in the city of Munich (1562 persons per km2; 4061 individuals per square mile) or in the rural surroundings (213 persons per km2; 553 individuals per square mile). Cannabis use and psychotic symptoms were assessed three times over a 10-year follow-up period using the Munich version of the Composite International Diagnostic Interview. Results Analyses revealed a significant interaction between cannabis and urbanicity [10.9% adjusted difference in risk, 95% confidence interval (CI) 3.2-18.6, p=0.005]. The effect of cannabis use on follow-up incident psychotic symptoms was much stronger in individuals who grew up in an urban environment (adjusted risk difference 6.8%, 95% CI 1.0-12.5, p=0.021) compared with individuals from rural surroundings (adjusted risk difference −4.1%, 95% CI −9.8 to 1.6, p=0.159). The statistical interaction was compatible with substantial underlying biological synergism. Conclusions Exposure to environmental influences associated with urban upbringing may increase vulnerability to the psychotomimetic effects of cannabis use later in lif

    Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic and magneto-transport properties

    Full text link
    In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.Comment: 12 pages, 14 figs. accepted for publication at PR
    • …
    corecore