15 research outputs found

    Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR<sup>+</sup> Breast Cancer:Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial

    Get PDF
    Purpose: Eftilagimod alpha (efti), a soluble lymphocyte activation gene (LAG-3) protein and MHC class II agonist, enhances innate and adaptive immunity. Active Immunotherapy PAClitaxel (AIPAC) evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor–positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2– MBC). Patients and Methods: Women with HR+ HER2– MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. Results: 114 patients received efti and 112 patients received placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197) but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFNg and CXCL10 levels. Conclusions: Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. OS was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti’s role in patients with ET-resistant HER2– MBC.</p

    Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR<sup>+</sup> Breast Cancer:Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial

    Get PDF
    Purpose: Eftilagimod alpha (efti), a soluble lymphocyte activation gene (LAG-3) protein and MHC class II agonist, enhances innate and adaptive immunity. Active Immunotherapy PAClitaxel (AIPAC) evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor–positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2– MBC). Patients and Methods: Women with HR+ HER2– MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. Results: 114 patients received efti and 112 patients received placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197) but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFNg and CXCL10 levels. Conclusions: Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. OS was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti’s role in patients with ET-resistant HER2– MBC.</p

    Computational methods to support high-content screening: from compound selection and data analysis to postulating target hypotheses

    No full text
    Background: Computational support for high-content screening (HCS) is of paramount importance at several stages of the process: from the selection of compounds, to the image and data analysis all the way to hit identification and analysis of mechanisms of action. Method: Here, we describe computational approaches to improve the benefit gained from HCS, such as compound selection, image analysis and algorithms to further process and explore HCS data. We describe the current challenges in these areas and state our expectations for the field. Conclusion: At present there are no standard approaches for correction, normalization, analysis or visualization of HCS data. Thus, the information-rich data sets provided by HCS are exploited to only a limited extent. To overcome this shortcoming, a thorough comparison and evaluation of different tools is needed

    Comparison of multivariate data analysis strategies for high-content screening

    No full text
    High content screening (HCS) is increasingly used in biomedical research generating multivariate, single-cell datasets. Before scoring a treatment the complex datasets are processed (e.g. normalized, reduced to a lower dimensionality) to help extracting valuable information. However, there has been no published comparison of the performance of these methods. This study comparatively evaluates unbiased approaches to reduce dimensionality as well as to summarize cell populations. To evaluate these different data processing strategies the prediction accuracies and the Z’ factors of control compounds of a HCS cell cycle dataset were monitored. As expected dimension reduction leads to a lower degree of discrimination between control samples. A high degree of classification accuracy was achieved when the cell population was summarized on well level using percentile values. As a conclusion, the generic data analysis pipeline described here enables a systematic review of alternative strategies to analyze multiparametric results from biological systems

    Differentiation and visualization of diverse cellular phenotypic responses in primary high-content screening

    No full text
    High throughput screening based on sub-cellular imaging has become a powerful tool in lead discovery. Through the generation of high quality images not only the specific target signal can be analyzed but also phenotypic changes of the whole cell are recorded. Yet analysis strategies for the exploration of high content screening results in a manner that is independent on predefined control phenotypes are largely missing. The approach presented here is based on a modeling technique, self-organizing maps (SOMs), which utilizes multi-parametric results by grouping treatments that create similar morphological effects. As a new way to visualize the results each node is represented with an image highlighting the representative cell phenotype. The approach has the potential to identify both expected hits as well as novel cell phenotypes. Moreover, different compound chemotypes, which cause the same phenotypic effects, are identified facilitating “scaffold hopping”

    TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation

    No full text
    The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling

    Safety, tolerability, and parasite clearance kinetics in controlled human malaria infection after direct venous inoculation of Plasmodium falciparum sporozoites : a model for evaluating new blood-stage antimalarial drugs

    No full text
    Plasmodium falciparum sporozoite (PfSPZ) direct venous inoculation (DVI) using cryopreserved, infectious PfSPZ (PfSPZ Challenge [Sanaria, Rockville, Maryland]) is an established controlled human malaria infection model. However, to evaluate new chemical entities with potential blood-stage activity, more detailed data are needed on safety, tolerability, and parasite clearance kinetics for DVI of PfSPZ Challenge with established schizonticidal antimalarial drugs. This open-label, phase Ib study enrolled 16 malaria-naïve healthy adults in two cohorts (eight per cohort). Following DVI of 3,200 PfSPZ (NF54 strain), parasitemia was assessed by quantitative polymerase chain reaction (qPCR) from day 7. The approved antimalarial artemether-lumefantrine was administered at a qPCR-defined target parasitemia of ≥ 5,000 parasites/mL of blood. The intervention was generally well tolerated, with two grade 3 adverse events of neutropenia, and no serious adverse events. All 16 participants developed parasitemia after a mean of 9.7 days (95% CI 9.1–10.4) and a mean parasitemia level of 511 parasites/mL (95% CI 369–709). The median time to reach ≥ 5,000 parasites/mL was 11.5 days (95% CI 10.4–12.4; Kaplan–Meier), at that point the geometric mean (GM) parasitemia was 15,530 parasites/mL (95% CI 10,268–23,488). Artemether-lumefantrine was initiated at a GM of 12.1 days (95% CI 11.5–12.7), and a GM parasitemia of 6,101 parasites/mL (1,587–23,450). Mean parasite clearance time was 1.3 days (95% CI 0.9–2.1) and the mean log(10) parasite reduction ratio over 48 hours was 3.6 (95% CI 3.4–3.7). This study supports the safety, tolerability, and feasibility of PfSPZ Challenge by DVI for evaluating the blood-stage activity of candidate antimalarial drugs

    Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR+ Breast Cancer: Results from AIPAC, a Randomized, Placebo Controlled Phase 2b Trial.

    No full text
    Eftilagimod alpha (efti), a soluble LAG-3 protein and MHC class II agonist, enhances innate and adaptive immunity. AIPAC evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor-positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2- MBC). Women with HR+ HER2- MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. 114 patients received efti and 112, placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197), but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFN-Îł and CXCL10 levels. Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. Overall survival was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti's role in patients with ET-resistant HER2- MBC
    corecore