41 research outputs found

    Identification of a cusp catastrophe in a gap-leaping western boundary current

    Get PDF
    The Luzon Strait is an example of a location where a western boundary current must negotiate a gap in bathymetry. In the gap region, the current can exhibit multiple steady states (leaping the gap or penetrating the gap) and hysteresis (dependence on past flow state). Laboratory experiments on such flows are presented in order to investigate the system behavior in a two-dimensional parameter space of varying flow rate and platform rotation rate. The experiments were performed in a cylindrical tank on a one-meter rotating table. A semi-circular ridge with a gap was inserted over sloping bottom topography in the active region, and the flow was driven by pumping water through sponges. The flow was visualized with the Particle Image Velocimetry method. By varying the flow rate (strength of current), we were able to identify transitions between leaping and penetrating flow states. These transitions bound a region of multiple steady states where hysteresis is present. The dynamics of the system is shown to exhibit a cusp catastrophe classified as A3. The scaling dependencies of some critical properties of the flow are analyzed

    A novel method for bone fatigue monitoring and prediction

    Get PDF
    Bone fatigue, often manifest as stress fractures, is a common injury that plagues many individuals, adversely affect quality of life, and is an obstacle to extended human spaceflight. This manuscript details a pilot study that was conducted to determine if the Phase Space Warping (PSW) methodology could be used to monitor/predict fatigue failure in bone tissue. A Moon\u27s beam experimental apparatus was used to perform variable amplitude fatigue tests on bovine bone specimens. Scanning electron microscopy was used to evaluate the fracture surface and identify the fracture type. The PSW method allowed for successful identification of the various damage modes and may lead to the development of a viable tool for predicting the health and fatigue life of bone

    Cross-Shelf Transport Through the Interaction among a Coastal Jet, a Topographic Wave, and Tides

    Get PDF
    Shelf break flows are often characterized by along-isobath jets with cross-shelf currents associated with tides and waves guided by variable topography. Here, we address the question: Can a superposition of such flows produce significant aperiodic cross-shelf transport? To answer this question, we use a barotropic analytic model for the jet based on a similarity solution of the shallow water equations over variable topography, a wave disturbance determined by the topography, and a diurnal tidal disturbance. We use standard Lagrangian methods to assess the cross-shelf transport, presenting the results, however, in a Eulerian frame, so as to be amenable to oceanographic observations. The relative roles of the different flow components in cross-shelf transport are assessed through an extensive parameter study. We find that a superposition of all three flow components can indeed produce consequential background aperiodic transport. An application of the model using recent observations from the Texas Shelf demonstrates that a combination of these background mechanisms can produce significant transport under realistic conditions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Preparation, via

    No full text

    Damage accumulation of bovine bone under variable amplitude loads

    Get PDF
    Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile (4000 μϵ), brittle due to high cyclic amplitude loading (>9000 μϵ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 –6750 μϵ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism. Keywords: Bone fatigue, Bone fracture, Health system monitoring, Failure predictio

    Thermoacoustic Interpretation of Second-Mode Instability

    No full text
    corecore