391 research outputs found

    Submicrosecond Dynamics of Water Explosive Boiling and Lift-Off from Laser-Heated Silicon Surfaces

    Get PDF
    Explosive boiling and lift-off of a thin layer of micron-sized transparent water droplets from an absorbing Si substrate heated by a nanosecond KrF laser were studied using a contact photoacoustic technique. The compressive photoacoustic response increases steeply to an asymptotic value on the order of the water critical pressure starting at a threshold laser fluence of 0.20 J cm2, where lift-off of the water layer also occurs. Above this threshold, several reproducible discrete multimegahertz components are revealed in Fourier spectra of the acoustic transients, corresponding to nanosecond oscillations of steam bubbles inside the water droplets on the microsecond time scale of the lift-off process. The acoustic pressure buildup, bubble dynamics, and the subsequent lift-off of the thin water layer are interpreted as relaxation stages after near-spinodal explosive boiling of the superheated interfacial water. © 2006 American Institute of Physics

    Near-Field Thermal Radiative Transfer and Thermoacoustic Effects from Vapor Plumes Produced by Pulsed CO/sub 2 /Laser Ablation of Bulk Water

    Get PDF
    Submillimeter deep heating of bulk water by thermal radiation from ablative water plumes produced by a 10.6 μm transversely excited atmospheric C O2 laser and the related acoustic generation has been studied using a contact time-resolved photoacoustic technique. Effective penetration depths of thermal radiation in water were measured as a function of incident laser fluence and the corresponding plume temperatures were estimated. The near-field thermal and thermoacoustic effects of thermal radiation in laser-ablated bulk water and their potential near-field implications are discussed. c 2006 American Institute of Physic

    Plasma-mediated Nanosecond-Laser Generation of Si Nanoparticles in Water

    Get PDF
    Plasma-mediated nanosecond IR-laser ablation of Si in water was describe sublinear function mass loss by multi shot ablative and third-power function extinction coefficient of generated colloidal solutions of density laser intensity. The first addiction shows influence subcritical ablative plasma to ablative rate, also fast increase extinction coefficient of 100 nm size particles of silicon in colloidal solution implies plasma-mediated dissociation of the ablation products. Keywords: silicon nanoparticles, nanosecond laser ablation, sub-critical ablative plasma, extinction coefficient, scaling relationships, melt expulsio

    Nanostructuring of solid surfaces by femtosecond laser pulses

    Get PDF
    One-dimensional quasi-periodic structures whose period is much smaller than the wavelength of exciting optical radiation have been obtained on a titanium surface under the multi-shot action of linearly polarized femtosecond laser radiation at various surface energy densities. As the radiation energy density increases, the one-dimensional surface nanogratings oriented perpendicularly to the radiation polarization evolve from quasi-periodic ablative nanogrooves to regular lattices with sub-wavelength periods (90-400 nmyesRussian Academy of Science

    On elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation

    Full text link
    The Conte-Musette method has been modified for the search of only elliptic solutions to systems of differential equations. A key idea of this a priory restriction is to simplify calculations by means of the use of a few Laurent series solutions instead of one and the use of the residue theorem. The application of our approach to the quintic complex one-dimensional Ginzburg-Landau equation (CGLE5) allows to find elliptic solutions in the wave form. We also find restrictions on coefficients, which are necessary conditions for the existence of elliptic solutions for the CGLE5. Using the investigation of the CGLE5 as an example, we demonstrate that to find elliptic solutions the analysis of a system of differential equations is more preferable than the analysis of the equivalent single differential equation.Comment: LaTeX, 21 page

    Laser Ablation of Optically Thin Absorbing Liquid Layer Predeposited onto a Transparent Solid Substrate

    Get PDF
    Ablation of optically thin liquid 2-propanol layers of variable thickness on IR-transparent solid Si substrate by a nanosecond CO 2laser has been experimentally studied using time-resolved optical interferometric and microscopy techniques. Basic ablation parameters - threshold fluences for surface vaporization and explosive homogeneous boiling of the superheated liquid, ablation depths, vaporization (ablation) rates, and characteristic ablation times versus laser fluence - were measured as a function of alcohol layer thickness. The underlying ablation mechanisms, their thermodynamics, and microscopic details are discussed. c 2006 American Institute of Physic

    Residual stresses in Ti6Al4V alloy after surface texturing by femtosecond laser pulses

    Get PDF
    Surface topography and residual stresses in surface layers of α + β titanium alloy Ti6Al4V textured by 1030-nm, 320-fs-laser pulses were studied by scanning electron microscopy and X-ray diffraction analysis. It was found that multipulse laser processing leads to the formation of laser-induced periodic surface structures (LIPSS) on the surface of Ti6Al4V alloy. XRD studies showed that depending on the laser pulse fluence, both tensile and compressive residual stresses are formed in thin near-surface layer

    Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface

    Get PDF
    One-dimensional transverse (perpendicular to the laser polarization) gratings with periods Λ ≈ 50-60 nm were observed on a titanium surface within 150 nm wide, micrometer-long regular surface modification longitudinal stripes fabricated by multiple 744 nm Ti:sapphire femtosecond laser shots, occurring at a repetition rate of 10 HzyesBelgorod State Universit
    corecore