9 research outputs found
Kalman filter density reconstruction in ICRH discharges on ASDEX Upgrade
Plasma density is one of the key quantities that need to be controlled in real-time as it scales directly with fusion power and, if left uncontrolled, density limits can be reached leading to a disruption. On ASDEX Upgrade (AUG), the real-time measurements are the line-integrated density, measured by the interferometers, and the average density derived from the bremsstrahlung measured by spectroscopy. For control, these measurements are used to reconstruct the radial density profile using an extended Kalman filter (EKF). However, in discharges where ion cyclotron resonance heating (ICRH) is used, the measurements from the interferometers are corrupted and the reconstructed density is false. In this paper, the existing EKF implementation is improved, implemented and experimentally verified on AUG. The new EKF includes a new particle transport model in the prediction model RAPDENS as well as a new representation of ionization and recombination. Furthermore, an algorithm was introduced that is capable of detecting the corrupt diagnostics; this algorithm is based on the rate of change of the innovation residual. The changes to the RAPDENS observer resulted in better density reconstruction in ICRH discharges where corrupt measurement occur. The new version has been implemented on the real-time control system at AUG and functions properly in ICRH discharges.</p
Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications
During extensive surveys of global Phytophthora diversity 14 new species detected in natural ecosystems in Chile, Indonesia, USA (Louisiana), Sweden, Ukraine and Vietnam were assigned to Phytophthora major Clade 10 based on a multigene phylogeny of nine nuclear and three mitochondrial gene regions. Clade 10 now comprises three subclades. Subclades 10a and 10b contain species with nonpapillate sporangia, a range of breeding systems and a mainly soil- and waterborne lifestyle. These include the previously described P. afrocarpa, P. gallica and P. intercalaris and eight of the new species: P. ludoviciana, P. procera, P. pseudogallica, P. scandinavica, P. subarctica, P. tenuimura, P. tonkinensis and P. ukrainensis. In contrast, all species in Subclade 10c have papillate sporangia and are self-fertile (or homothallic) with an aerial lifestyle including the known P. boehmeriae, P. gondwanensis, P. kernoviae and P. morindae and the new species P. celebensis, P. chilensis, P. javanensis, P. multiglobulosa, P. pseudochilensis and P. pseudokernoviae. All new Phytophthora species differed from each other and from related species by their unique combinations of morphological characters, breeding systems, cardinal temperatures and growth rates. The biogeography and evolutionary history of Clade 10 are discussed. We propose that the three subclades originated via the early divergence of pre-Gondwanan ancestors > 175 Mya into water- and soilborne and aerially dispersed lineages and subsequently underwent multiple allopatric and sympatric radiations during their global spread
Developments on actuator management, plasma state reconstruction, and control on ASDEX Upgrade
In present day tokamaks, the role of the control research is to support the physics experiments and to prepare technologies for future devices such as ITER and DEMO. This paper presents the developments done under the MST1 program collaboration on ASDEX Upgrade in the area of the actuator management, plasma density reconstruction, and feedback control of the electron temperature. In the area of actuator management, the actuator interface was unified for the neutral beams and for the gyrotrons, which enables to freely group these actuators to bigger objects, so called virtual actuators. In the area of plasma state reconstruction, a significant progress was made in the real time estimation of the plasma density in discharges with ion cyclotron heating. This enabled execution of experiments requiring electron temperature control in discharges with ion cyclotron heating, which are reported as well. Other control applications such as fusion power emulation using heating actuators are not described in detail, but a list of relevant references is given
Detection and quantification of the air inoculum of Caliciopsis pinea in a plantation of Pinus radiata in Italy
Caliciopsis pinea has been historically described as a secondary pathogen of pines. However, it has recently been associated with severe damages on Pinus radiata in Italy. Our study focused on the description of the seasonal spore dispersal of C. pinea and its relation to meteorological conditions (temperature, leaf wetness, relative humidity and precipitations). For this experiment one infected P. radiata plantation was sampled in Tuscany (Italy). A rotating arm spore trap together with a weather station were installed to sample the aerospora for 24 h every week from May to November 2016. Exposed tapes from spore traps were directly analyzed after DNA extraction by qPCR using specific primers and TaqMan MGB probe. The study shows an irregular occurrence of the inoculum of C. pinea throughout the whole sampling period with peak levels in mid-June and early August. The statistical analysis of the DNA and climatic data clearly show the strong influence of precipitation on the spore production of this pathogen. Furthermore, the very low detection limit of the qPCR experiment shows the efficacy and suitability of rotating arm spore traps for early detection of this pathogen