24 research outputs found

    RARE Velocimetry of Shear Banded Flow in Cylindrical Couette Geometry

    No full text
    A flow phenomena called ‘shear banding’ is often observed for a certain class of complex fluids, namely wormlike micellar solutions. Wormlike micelles are elongated flexible self-assembly structures formed by the aggregation of amphiphiles, which may entangle into a dynamic network above a certain concentration threshold. The entanglement results in the sample having both solid-like (elastic) and liquid-like (viscous) properties, an ambiguity commonly found in complex fluids. Under certain shear conditions, the flow couples with the structure of the micellar network, leading to the formation of (shear) bands with differing viscosity. The principle goal of this work is to address open questions regarding the temporal and spatial stability of shear banded flow. Shear banding is often studied in cylindrical Couette cells, where the fluid is sheared in a gap between differentially rotating concentric cylinders. For the sake of an accurate description of the flow in such a shear cell, the methodology for a 2D Nuclear Magnetic Resonance (NMR) velocimetry technique (known as PGSE-RARE), which offers high temporal and spatial resolution, is improved and refined. Two main challenges are identified and overcome. The first concerns the fact that the velocity imaging process operates on a Cartesian grid, whereas the flow in the Couette cell is of cylindrical symmetry. Numerical calculations and NMR simulations based on the Bloch equations, as well as experimental evidence, give insight on the appropriate selection of the fluid volume over which velocity information is accumulated and the preferred scheme through which the NMR image is acquired in the so-called k-space. The small extent of the fluid gap for the cells in use is the second challenge. In this respect, a variant of the velocimetry technique is developed, which offers ultra high resolution in the gap direction, necessary for a detailed description of the flow profile in the banded state. The refined methodology is applied in a thorough study of a certain wormlike micellar solution (‘10% CPCl’), which is known to exhibit spatiotemporal fluctuations and has been subject of numerous studies over the past 20 years. NMR results are supported by a recently developed 2D Rheo-USV (Ultrasonic Speckle Velocimetry) method, which offers an even higher temporal resolution. The two complementary methods show good agreement for averaged velocity profiles. In line with previous studies the fluid is found to follow a standard anomalous lever rule, which is characterized by a constant shear rate in the high viscosity band and a varying shear rate and proportion of the high shear rate band. In particular, the high resolution NMR variant allows a refined picture on the dynamics of the interface between the two bands. Furthermore, slip is observed for all investigated shear rates. The amount of slip, however, is found to strongly depend on the specifities of the Couette cells in use. Spatially and temporally resolved flow maps reveal various flow instabilities. Ultrasound measurements show vorticity structures in the order of the gap width. In the NMR case no such structures are observed due to the lower resolution in the axial direction. For higher shear rates the occurrence of turbulent bursts is detected for USV. No direct evidence of similar flow instabilities is found in the NMR case. Finally, broad distributions dominate the high shear rate band in temporally and spatially resolved velocity profiles, showing the fluctuative nature of the flow

    Arrested dynamics in a model peptide hydrogel system

    Get PDF
    We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods

    Self-assembly of the peptide A10K – Intermediate state in aggregate formation

    Get PDF
    We have studied the synthetic surfactant-like peptide A10K in solution. Upon mixing the freeze dried, essentially amorphous peptide powder in heavy water, the peptides self-assemble into long ribbon-like aggregates with a fixed cross section of circa 3x8 nm. It is still unclear whether this self-assembly is equilibrium like a surfactant micelle formation or whether it corresponds to a precipitation of a solid phase. Through light scattering measurements on dilution series, the solubility of the ribbons has been determined to 4.7 ÎźM. However, quantitative NMR spectroscopy shows a monomer concentration of 3 mM, corresponding to a roughly 60 times supersaturation, and independent of the total concentration. Samples prepared directly at, or below this specific concentration shows no, or only minor signs of aggregation. In combination with a broad peak in high resolution 1H NMR spectroscopy we conclude that the formation of the A10K aggregates occurs through an intermediate state in equilibrium with the peptide monomers. Please click Additional Files below to see the full abstract

    Two Dimensional Oblique Molecular Packing within a Model Peptide Ribbon Aggregate

    Get PDF
    A10K (A=alanine, K=lysine) model peptides self‐assemble into ribbon‐like β‐sheet aggregates. Here, we report an X‐ray diffraction investigation on a flow‐aligned dispersion of these self‐assembly structures. The two‐dimensional wide‐angle X‐ray scattering pattern suggests that peptide pack in a two‐dimensional oblique lattice, essentially identical to the crystalline packing of polyalanine, An (for n>4). One side of the oblique unit cell, corresponding to the anti‐parallel β‐sheet, is oriented along the ribbon's axis. Together with recently published small angle X‐ray scattering data of the same system, this work thus yields a detailed description of the self‐assembled ribbon aggregates, down to the molecular length scale. Notably, our results highlight the importance of the crystalline peptide packing within its self‐assembly aggregates, which is often neglected

    RARE Velocimetry of Shear Banded Flow in Cylindrical Couette Geometry

    No full text
    A flow phenomena called ‘shear banding’ is often observed for a certain class of complex fluids, namely wormlike micellar solutions. Wormlike micelles are elongated flexible self-assembly structures formed by the aggregation of amphiphiles, which may entangle into a dynamic network above a certain concentration threshold. The entanglement results in the sample having both solid-like (elastic) and liquid-like (viscous) properties, an ambiguity commonly found in complex fluids. Under certain shear conditions, the flow couples with the structure of the micellar network, leading to the formation of (shear) bands with differing viscosity. The principle goal of this work is to address open questions regarding the temporal and spatial stability of shear banded flow. Shear banding is often studied in cylindrical Couette cells, where the fluid is sheared in a gap between differentially rotating concentric cylinders. For the sake of an accurate description of the flow in such a shear cell, the methodology for a 2D Nuclear Magnetic Resonance (NMR) velocimetry technique (known as PGSE-RARE), which offers high temporal and spatial resolution, is improved and refined. Two main challenges are identified and overcome. The first concerns the fact that the velocity imaging process operates on a Cartesian grid, whereas the flow in the Couette cell is of cylindrical symmetry. Numerical calculations and NMR simulations based on the Bloch equations, as well as experimental evidence, give insight on the appropriate selection of the fluid volume over which velocity information is accumulated and the preferred scheme through which the NMR image is acquired in the so-called k-space. The small extent of the fluid gap for the cells in use is the second challenge. In this respect, a variant of the velocimetry technique is developed, which offers ultra high resolution in the gap direction, necessary for a detailed description of the flow profile in the banded state. The refined methodology is applied in a thorough study of a certain wormlike micellar solution (‘10% CPCl’), which is known to exhibit spatiotemporal fluctuations and has been subject of numerous studies over the past 20 years. NMR results are supported by a recently developed 2D Rheo-USV (Ultrasonic Speckle Velocimetry) method, which offers an even higher temporal resolution. The two complementary methods show good agreement for averaged velocity profiles. In line with previous studies the fluid is found to follow a standard anomalous lever rule, which is characterized by a constant shear rate in the high viscosity band and a varying shear rate and proportion of the high shear rate band. In particular, the high resolution NMR variant allows a refined picture on the dynamics of the interface between the two bands. Furthermore, slip is observed for all investigated shear rates. The amount of slip, however, is found to strongly depend on the specifities of the Couette cells in use. Spatially and temporally resolved flow maps reveal various flow instabilities. Ultrasound measurements show vorticity structures in the order of the gap width. In the NMR case no such structures are observed due to the lower resolution in the axial direction. For higher shear rates the occurrence of turbulent bursts is detected for USV. No direct evidence of similar flow instabilities is found in the NMR case. Finally, broad distributions dominate the high shear rate band in temporally and spatially resolved velocity profiles, showing the fluctuative nature of the flow

    Twisted Ribbon Aggregates in a Model Peptide System

    No full text
    The model peptides A 8 K and A 10 K self-assemble in water into ca. 100 nm long ribbon-like aggregates. These structures can be described as β-sheets laminated into a ribbon structure with a constant elliptical cross-section of 4 by 8 nm, where the longer axis corresponds to a finite number, N ≠15, of laminated sheets, and 4 nm corresponds to a stretched peptide length. The ribbon cross-section is strikingly constant and independent of the peptide concentration. High-contrast transmission electron microscopy shows that the ribbons are twisted with a pitch λ ≠15 nm. The self-assembly is analyzed within a simple model taking into account the interfacial free energy of the hydrophobic β-sheets and a free energy penalty arising from an increased stretching of hydrogen bonds within the laminated β-sheets, arising from the twist of the ribbons. The model predicts an optimal value N, in agreement with the experimental observations

    Slow dissolution kinetics of model peptide fibrils

    No full text
    Understanding the kinetics of peptide self-assembly is important because of the involvement of peptide amyloid fibrils in several neurodegenerative diseases. In this paper, we have studied the dissolution kinetics of self-assembled model peptide fibrils after a dilution quench. Due to the low concentrations involved, the experimental method of choice was isothermal titration calorimetry (ITC). We show that the dissolution is a strikingly slow and reaction-limited process, that can be timescale separated from other rapid processes associated with dilution in the ITC experiment. We argue that the rate-limiting step of dissolution involves the breaking up of inter-peptide β–sheet hydrogen bonds, replacing them with peptide–water hydrogen bonds. Complementary pH experiments revealed that the self-assembly involves partial deprotonation of the peptide molecules
    corecore